Robust linear regression for high‐dimensional data: An overview
暂无分享,去创建一个
[1] Christophe Croux,et al. Sparse regression for large data sets with outliers , 2021, Eur. J. Oper. Res..
[2] Stefan Van Aelst,et al. Sparse Principal Component Analysis Based on Least Trimmed Squares , 2020, Technometrics.
[3] Peter Filzmoser,et al. Robust Multivariate Methods in Chemometrics , 2020, Comprehensive Chemometrics.
[4] P. Filzmoser,et al. Cellwise robust M regression , 2019, Comput. Stat. Data Anal..
[5] Ezequiel Smucler,et al. Robust elastic net estimators for variable selection and identification of proteomic biomarkers , 2019 .
[6] Chunxia Zhang,et al. Robust sparse regression by modeling noise as a mixture of gaussians , 2019, Journal of Applied Statistics.
[7] Stefan Van Aelst,et al. Robust variable screening for regression using factor profiling , 2017, Stat. Anal. Data Min..
[8] Michael Muma,et al. Robust Statistics for Signal Processing , 2018 .
[9] Peter Filzmoser,et al. A robust Liu regression estimator , 2018, Commun. Stat. Simul. Comput..
[10] Le Chang,et al. Robust Lasso Regression Using Tukey's Biweight Criterion , 2018, Technometrics.
[11] Peter Rousseeuw,et al. Detecting Deviating Data Cells , 2016, Technometrics.
[12] Yanxin Wang,et al. Variable selection and parameter estimation via WLAD–SCAD with a diverging number of parameters , 2017 .
[13] Peter Filzmoser,et al. Robust and sparse estimation methods for high-dimensional linear and logistic regression , 2017, 1703.04951.
[14] C. Agostinelli,et al. Robust iteratively reweighted SIMPLS , 2017 .
[15] Victor J. Yohai,et al. Robust and sparse estimators for linear regression models , 2015, Comput. Stat. Data Anal..
[16] Mia Hubert,et al. Sparse PCA for High-Dimensional Data With Outliers , 2016, Technometrics.
[17] Peter Filzmoser,et al. Sparse and robust PLS for binary classification , 2016 .
[18] Hongyang Zhang,et al. Robust regression estimation and inference in the presence of cellwise and casewise contamination , 2015, Comput. Stat. Data Anal..
[19] Christophe Croux,et al. The shooting S-estimator for robust regression , 2015, Comput. Stat..
[20] Visa Koivunen,et al. New robust LASSO method based on ranks , 2015, 2015 23rd European Signal Processing Conference (EUSIPCO).
[21] P. Filzmoser,et al. Sparse Partial Robust M Regression , 2015 .
[22] Trevor Hastie,et al. Statistical Learning with Sparsity: The Lasso and Generalizations , 2015 .
[23] M. Sillanpää,et al. Robust Variable Selection and Coefficient Estimation in Multivariate Multiple Regression Using LAD-Lasso , 2015 .
[24] Christophe Croux,et al. The influence function of penalized regression estimators , 2015, 1501.01208.
[25] Fang Han,et al. Robust Sparse Principal Component Regression under the High Dimensional Elliptical Model , 2013, NIPS.
[26] Ji Fu,et al. A New Class of Biased Estimate , 2013 .
[27] Peter Filzmoser,et al. Robust Sparse Principal Component Analysis , 2013, Technometrics.
[28] Maria-Pia Victoria-Feser,et al. Robust VIF regression with application to variable selection in large data sets , 2013, 1304.5349.
[29] Christophe Croux,et al. Sparse least trimmed squares regression for analyzing high-dimensional large data sets , 2013, 1304.4773.
[30] Olcay Arslan,et al. Weighted LAD-LASSO method for robust parameter estimation and variable selection in regression , 2012, Comput. Stat. Data Anal..
[31] Youngjo Lee,et al. Sparse partial least-squares regression and its applications to high-throughput data analysis , 2011 .
[32] A. Basu,et al. Statistical Inference: The Minimum Distance Approach , 2011 .
[33] Ricardo A. Maronna,et al. Robust Ridge Regression for High-Dimensional Data , 2011, Technometrics.
[34] S. Keleş,et al. Sparse partial least squares regression for simultaneous dimension reduction and variable selection , 2010, Journal of the Royal Statistical Society. Series B, Statistical methodology.
[35] P. Filzmoser,et al. Repeated double cross validation , 2009 .
[36] Stefan Van Aelst,et al. Propagation of outliers in multivariate data , 2009, 0903.0447.
[37] Jafar A. Khan,et al. Robust Linear Model Selection Based on Least Angle Regression , 2007 .
[38] Hansheng Wang,et al. Robust Regression Shrinkage and Consistent Variable Selection Through the LAD-Lasso , 2007 .
[39] P. Filzmoser,et al. Algorithms for Projection-Pursuit Robust Principal Component Analysis , 2007 .
[40] V. Yohai,et al. Robust Statistics: Theory and Methods , 2006 .
[41] Peter Filzmoser,et al. Partial robust M-regression , 2005 .
[42] Christophe Croux,et al. High breakdown estimators for principal components: the projection-pursuit approach revisited , 2005 .
[43] H. Zou,et al. Regularization and variable selection via the elastic net , 2005 .
[44] Mia Hubert,et al. ROBPCA: A New Approach to Robust Principal Component Analysis , 2005, Technometrics.
[45] PETER J. ROUSSEEUW,et al. Computing LTS Regression for Large Data Sets , 2005, Data Mining and Knowledge Discovery.
[46] R. Tibshirani,et al. REJOINDER TO "LEAST ANGLE REGRESSION" BY EFRON ET AL. , 2004, math/0406474.
[47] B. Ripley,et al. Robust Statistics , 2018, Encyclopedia of Mathematical Geosciences.
[48] M. Hubert,et al. A robust PCR method for high‐dimensional regressors , 2003 .
[49] Ruben H. Zamar,et al. Robust Estimates of Location and Dispersion for High-Dimensional Datasets , 2002, Technometrics.
[50] David W. Scott,et al. Parametric Statistical Modeling by Minimum Integrated Square Error , 2001, Technometrics.
[51] Arthur E. Hoerl,et al. Ridge Regression: Biased Estimation for Nonorthogonal Problems , 2000, Technometrics.
[52] Katrien van Driessen,et al. A Fast Algorithm for the Minimum Covariance Determinant Estimator , 1999, Technometrics.
[53] R. Tibshirani. Regression Shrinkage and Selection via the Lasso , 1996 .
[54] Liu Kejian,et al. A new class of blased estimate in linear regression , 1993 .
[55] P. Rousseeuw,et al. Unmasking Multivariate Outliers and Leverage Points , 1990 .
[56] Peter J. Rousseeuw,et al. Robust Regression and Outlier Detection , 2005, Wiley Series in Probability and Statistics.
[57] John Law,et al. Robust Statistics—The Approach Based on Influence Functions , 1986 .
[58] P. Rousseeuw. Least Median of Squares Regression , 1984 .