A volume of fluid based method for vapor-liquid phase change simulation with numerical oscillation suppression

Abstract A method of modeling phase change and suppressing numerical oscillation in vapor-liquid phase change simulation based on volume of fluid (VOF) is proposed in this study. The vapor-liquid interface is tracked by using VOF and reconstructed by applying a piecewise linear interface calculation (PLIC) scheme. Mass and heat transfer across the interface are modeled by employing a mass source term and an energy source term in the governing equations. In phase change model, the interface area needs to be calculated explicitly by assuming that the interface is linear in a cell. Expressions of two-dimensional interface length in the phase change model are also provided. The cause of the numerical oscillation, which may appear in the simulation, is analyzed. The analysis shows that small interfacial thermal resistance, large time step and ratio of interface area to cell volume are the causes of the numerical oscillation. An energy source donor-acceptor scheme is presented to suppress the numerical oscillation. One-dimensional Stefan problem, two-dimensional film boiling phenomenon and two-dimensional film condensation process were simulated using the model and scheme. Results validate the feasibility of using this method to simulate vapor-liquid flow with phase change. The numerical oscillations are also suppressed effectively in the simulations.

[1]  J. Brackbill,et al.  A continuum method for modeling surface tension , 1992 .

[2]  Jinliang Xu,et al.  Development of a vapor–liquid phase change model for volume-of-fluid method in FLUENT , 2012 .

[3]  J. Ervin,et al.  Transient pool boiling in microgravity , 1992 .

[4]  J. Joshi,et al.  Bubble Dynamics of a Single Condensing Vapor Bubble from Vertically Heated Wall in Subcooled Pool Boiling System:Experimental Measurements and CFD Simulations , 2012 .

[5]  S. Hardt,et al.  Evaporation model for interfacial flows based on a continuum-field representation of the source terms , 2008, J. Comput. Phys..

[6]  L YoungsD,et al.  Time-dependent multi-material flow with large fluid distortion. , 1982 .

[7]  G. Tryggvason,et al.  Computations of film boiling. Part I: numerical method , 2004 .

[8]  Yeng-Yung Tsui,et al.  Phase change calculations for film boiling flows , 2014 .

[9]  D. D. Col,et al.  Numerical Simulation of Laminar Liquid Film Condensation in a Horizontal Circular Minichannel , 2012 .

[10]  N. Samkhaniani,et al.  Numerical simulation of bubble condensation using CF-VOF , 2016 .

[11]  S. Welch,et al.  A Volume of Fluid Based Method for Fluid Flows with Phase Change , 2000 .

[12]  Dehao Xu,et al.  Thermo-hydrodynamics analysis of vapor–liquid two-phase flow in the flat-plate pulsating heat pipe , 2012 .

[13]  A. Ranjbar,et al.  Numerical simulation of bubble behavior in subcooled flow boiling under velocity and temperature gradient , 2015 .

[14]  Vijay K. Dhir,et al.  Numerical Simulation of Saturated Film Boiling on a Horizontal Surface , 1997 .

[15]  G. Son,et al.  Numerical Simulation of Film Boiling Near Critical Pressures With a Level Set Method , 1998 .

[16]  G. Son,et al.  Numerical Simulation of Bubble Merger Process on a Single Nucleation Site During Pool Nucleate Boiling , 2002 .

[17]  S. Garimella,et al.  The importance of turbulence during condensation in a horizontal circular minichannel , 2012 .

[18]  D. Juric,et al.  Computations of Boiling Flows , 1998 .

[19]  Okuyama Kunito,et al.  Transient boiling heat transfer characteristics of R113 at large stepwise power generation , 1988 .

[20]  D. Banerjee,et al.  Study of Subcooled Film Boiling on a Horizontal Disc: Part I—Analysis , 2001 .

[21]  Kenneth E. Goodson,et al.  VOLUME OF FLUID SIMULATION OF BOILING TWO-PHASE FLOW IN A VAPOR-VENTING MICROCHANNEL , 2010 .

[22]  Zhenyu Liu,et al.  VOF MODELING AND ANALYSIS OF FILMWISE CONDENSATION BETWEEN VERTICAL PARALLEL PLATES , 2012 .

[23]  V. Dhir Mechanistic Prediction of Nucleate Boiling Heat Transfer-Achievable or a Hopeless Task? , 2006 .

[24]  V. V. Klimenko,et al.  Film boiling on a horizontal plate — new correlation , 1981 .

[25]  Zhen Yang,et al.  Numerical and experimental investigation of two phase flow during boiling in a coiled tube , 2008 .

[26]  C. A. Ward,et al.  Expression for predicting liquid evaporation flux: Statistical rate theory approach , 1999 .

[27]  Yanhua Yang,et al.  Numerical simulation of film boiling on a sphere with a volume of fluid interface tracking method , 2008 .

[28]  A. Shooshtari,et al.  Volume of fluid-based numerical modeling of condensation heat transfer and fluid flow characteristics in microchannels , 2013 .

[29]  Jianliang Qian,et al.  Numerical Simulation of Subcooled Nucleate Boiling by Coupling Level-Set Method with Moving-Mesh Method , 2007 .

[30]  V. Dhir,et al.  Study of Lateral Merger of Vapor Bubbles During Nucleate Pool Boiling In the present work the bubble dynamics and heat transfer associated with lateral bubble , 2004 .

[31]  J. Thome,et al.  Convective Boiling and Condensation , 1972 .

[32]  A. D. Solomon,et al.  Mathematical Modeling Of Melting And Freezing Processes , 1992 .

[33]  R. S. Maurya,et al.  Numerical Investigation of Evaporation in the Developing Region of Laminar Falling Film Flow Under Constant Wall Heat Flux Conditions , 2010 .

[34]  W. Tao,et al.  Phase Change Heat Transfer Simulation for Boiling Bubbles Arising from a Vapor Film by the VOSET Method , 2011 .

[35]  D. Bedeaux,et al.  Transfer coefficients for evaporation , 1999 .

[36]  Alice Ying,et al.  Numerical Modeling for Multiphase Incompressible Flow with Phase Change , 2005 .

[37]  Xingtuan Yang,et al.  Numerical simulation of single bubble condensation in subcooled flow using OpenFOAM , 2015 .

[38]  S. Welch Direct simulation of vapor bubble growth , 1998 .