Effective Inseparability in a Topological Setting
暂无分享,去创建一个
[1] Y. Ershov. On a hierarchy of sets, II , 1968 .
[2] Dieter Spreen,et al. A characterization of effective topological spaces , 1990 .
[3] P. M. Cohn,et al. THE METAMATHEMATICS OF ALGEBRAIC SYSTEMS , 1972 .
[4] Iraj Kalantari,et al. Maximality in Effective Topology , 1983, J. Symb. Log..
[5] Alberto Bertoni,et al. The Complexity of Computing the Number of Strings of Given Length in Context-Free Languages , 1991, Theor. Comput. Sci..
[6] Andre Scedrov,et al. Church's Thesis, Continuity, and Set Theory , 1984, J. Symb. Log..
[7] Y. Ershov. A hierarchy of sets. I , 1968 .
[8] Viggo Stoltenberg-Hansen,et al. Algebraic and Fixed Point Equations over Inverse Limits of Algebras , 1991, Theor. Comput. Sci..
[9] Yu. L. Ershov,et al. On a hierarchy of sets. III , 1968 .
[10] Dana S. Scott,et al. Outline of a Mathematical Theory of Computation , 1970 .
[11] Yu. L. Ershov. Computable functionals of finite types , 1972 .
[12] Michael Beeson,et al. The nonderivability in intuitionistic formal systems of theorems on the continuity of effective operations , 1975, Journal of Symbolic Logic.
[13] J. Ersov. Theorie der Numerierungen II , 1973 .
[14] I. Kalantari. Major Subsets in Effective Topology , 1982 .
[15] Jr. Hartley Rogers. Theory of Recursive Functions and Effective Computability , 1969 .
[16] Dana S. Scott,et al. Data Types as Lattices , 1976, SIAM J. Comput..
[17] John Case,et al. Effectivizing Inseparability , 1991, Math. Log. Q..
[18] Michael Beeson. The Unprovability in Intuitionistic Formal Systems of the Continuity of Effective Operations on the Reals , 1976, J. Symb. Log..
[19] Dana S. Scott,et al. Lectures on a Mathematical Theory of Computation , 1982 .
[20] Michael B. Smyth,et al. Power Domains and Predicate Transformers: A Topological View , 1983, ICALP.
[21] Michael Beeson,et al. Continuity and comprehension in intuitionistic formal systems , 1977 .
[22] J. U. L. Ersov,et al. Theorie der Numerierungen II , 1975, Math. Log. Q..
[23] Philip Hingston. Non-Complemented Open Sets in Effective Topology , 1988 .
[24] P. Young,et al. Effective operators in a topological setting , 1984 .
[25] E. Yu. Nogina. Relations between certain classes of effectively topological spaces , 1969 .
[26] Jürgen Hauck. Konstruktive Darstellungen in Topologischen Räumen mit Rekursiver Basis , 1980, Math. Log. Q..
[27] Sören Stenlund. Computable Functionals of Finite Type , 1972 .
[28] R. Soare. Recursively enumerable sets and degrees , 1987 .
[29] John Fitch,et al. Course notes , 1975, SIGS.
[30] Jürgen Hauck. Berechenbarkeit in Topologischen Räumen Mit Rekursiver Basis , 1981, Math. Log. Q..
[31] Li Xiang. Everywhere Nonrecursive r.e. Sets in Recursively Presented Topological Spaces , 1988 .
[32] J. Dekker,et al. Some theorems on classes of recursively enumerable sets , 1958 .
[33] Paola Giannini,et al. Effectively Given Domains and Lambda-Calculus Models , 1984, Inf. Control..
[34] Iraj Kalantari,et al. Recursive Constructions in Topological Spaces , 1979, J. Symb. Log..
[35] Iraj Kalantari,et al. Effective topological spaces II: A hierarchy , 1985, Ann. Pure Appl. Log..
[36] Michael B. Smyth,et al. Quasi Uniformities: Reconciling Domains with Metric Spaces , 1987, MFPS.
[37] Iraj Kalantari,et al. Effective topological spaces I: a definability theory , 1985, Ann. Pure Appl. Log..
[38] Klaus Weihrauch,et al. Computability on Computable Metric Spaces , 1993, Theor. Comput. Sci..
[39] Iraj Kalantari,et al. Simplicity in Effective Topology , 1982, J. Symb. Log..
[40] Iraj Kalantari,et al. Effective topological spaces III: Forcing and definability , 1987, Ann. Pure Appl. Log..
[41] A. W. Roscoe,et al. Topology and category theory in computer science , 1991 .
[42] Y. Moschovakis. Recursive metric spaces , 1964 .
[43] Jeffrey B. Remmel,et al. Degrees of Recursively Enumerable Topological Spaces , 1983, J. Symb. Log..
[44] Dieter Spreen. Effective Operators and Continuity Revisited , 1992, LFCS.
[45] Dieter Spreen,et al. On r.e. inseparability of CPO index sets , 1983, Logic and Machines.