Behaviour of the extended Volterra lattice

We investigate the behaviour of solutions of the recently proposed extended Volterra lattice. A variety of methods are used to determine the effects of the new terms on small amplitude equations, and, following approximation of the partial differential delay equations by PDEs we also determine similarity reductions.

[1]  Mark Kac,et al.  On an Explicitly Soluble System of Nonlinear Differential Equations Related to Certain Toda Lattices , 1975 .

[2]  J. Bona,et al.  Model equations for long waves in nonlinear dispersive systems , 1972, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[3]  S. Manakov Complete integrability and stochastization of discrete dynamical systems , 1974 .

[4]  Combined breathing–kink modes in the FPU lattice , 2011 .

[5]  R. Yamilov CONSTRUCTION SCHEME FOR DISCRETE MIURA TRANSFORMATIONS , 1994 .

[6]  S. Rice,et al.  Some properties of large amplitude motion in an anharmonic chain with nearest neighbor interactions , 1982 .

[7]  Michael A. Collins,et al.  A quasicontinuum approximation for solitons in an atomic chain , 1981 .

[8]  Zuo-nong Zhu,et al.  Nonisospectral negative Volterra flows and mixed Volterra flows: Lax pairs, infinitely many conservation laws and integrable time discretization , 2004 .

[9]  P. R. Gordoa,et al.  Non-isospectral lattice hierarchies in 2+1 dimensions and generalized discrete Painlevé hierarchies , 2005 .

[10]  Jonathan A. D. Wattis,et al.  Approximations to solitary waves on lattices. II. quasi-continuum methods for fast and slow waves , 1993 .

[11]  N. G. Parke,et al.  Ordinary Differential Equations. , 1958 .

[12]  P. R. Gordoa,et al.  New 2+1 dimensional nonisospectral Toda lattice hierarchy , 2007 .

[13]  J. Wattis Approximations to solitary waves on lattices, III: the monatomic lattice with second-neighbour interactions , 1996 .

[14]  P. Olver Applications of Lie Groups to Differential Equations , 1986 .

[15]  R. Hirota,et al.  N -Soliton Solutions of Nonlinear Network Equations Describing a Volterra System , 1976 .

[16]  M. Wadati,et al.  Transformation Theories for Nonlinear Discrete Systems , 1976 .

[17]  M. Wadati,et al.  Bäcklund Transformation for Solutions of the Modified Volterra Lattice Equation , 1999 .

[18]  Philip Rosenau,et al.  Dynamics of nonlinear mass-spring chains near the continuum limit , 1986 .

[19]  Michel Remoissenet,et al.  Waves Called Solitons: Concepts and Experiments , 1996 .

[20]  M. Wadati,et al.  A New Derivation of the Bäcklund Transformation for the Volterra Lattice , 1998 .

[21]  Xing-Biao Hu,et al.  Bäcklund transformation and nonlinear superposition formula of an extended Lotka - Volterra equation , 1997 .

[22]  P. R. Gordoa,et al.  A nonisospectral extension of the Volterra hierarchy to 2+1 dimensions , 2005 .

[23]  M. Ablowitz,et al.  On a Volterra system , 1996 .

[24]  P. R. Gordoa,et al.  A note on the generalized symmetries of lattice hierarchies , 2009 .

[25]  D. Levi,et al.  On non-isospectral flows, Painlevé equations, and symmetries of differential and difference equations , 1992 .