Comparing mfERGs with estimates of cone density from in vivo imaging of the photoreceptor mosaic using a modified Heidelberg retina tomograph

The spatial variation in central retinal function determined from mfERG was compared to co-localised measurements of cone density in two normal subjects. Individual cone cells in the parafoveal region of the retina were identified from 1 degrees x1 degrees images of the photoreceptor mosaic using a modified Heidelberg retina tomograph (HRT). The variation in cone density compared well with previous histology and retinal imaging studies and was strongly linearly correlated (r=0.98, p<0.001) with mfERG amplitude within the central retina. Retinal function determined from mfERG amplitude appears to directly reflect the density of the cone cells in this region.

[1]  William A. Hare,et al.  Effects of APB, PDA, and TTX on ERG responses recorded using both multifocal and conventional methods in monkey , 2002, Documenta Ophthalmologica.

[2]  Stephen J. Anderson,et al.  Post-receptoral undersampling in normal human peripheral vision , 1990, Vision Research.

[3]  David A. Atchison,et al.  Peripheral refraction along the horizontal and vertical visual fields in myopia , 2006, Vision Research.

[4]  A. Hendrickson,et al.  Distribution of cones in human and monkey retina: individual variability and radial asymmetry. , 1987, Science.

[5]  L. Thibos,et al.  Retinal limits to the detection and resolution of gratings. , 1987, Journal of the Optical Society of America. A, Optics and image science.

[6]  A Bradley,et al.  Effects of refractive error on detection acuity and resolution acuity in peripheral vision. , 1997, Investigative ophthalmology & visual science.

[7]  W Seiple,et al.  A comparison of the components of the multifocal and full-field ERGs , 1997, Visual Neuroscience.

[8]  L N Thibos,et al.  Psychophysical Localization of the Human Visual Streak , 1992, Optometry and vision science : official publication of the American Academy of Optometry.

[9]  A. Hendrickson,et al.  Human photoreceptor topography , 1990, The Journal of comparative neurology.

[10]  G. M. Morris,et al.  Images of cone photoreceptors in the living human eye , 1996, Vision Research.

[11]  U. Grünert,et al.  Spatial density and immunoreactivity of bipolar cells in the macaque monkey retina , 1992, The Journal of comparative neurology.

[12]  W. H. Miller,et al.  Does cone positional disorder limit resolution? , 1987, Journal of the Optical Society of America. A, Optics and image science.

[13]  Jessica I. Wolfing,et al.  High-resolution retinal imaging of cone-rod dystrophy. , 2006, Ophthalmology.

[14]  W. Merigan,et al.  Spatial resolution across the macaque retina , 1990, Vision Research.

[15]  David Williams Topography of the foveal cone mosaic in the living human eye , 1988, Vision Research.

[16]  W. H. Miller,et al.  Photoreceptor diameter and spacing for highest resolving power. , 1977, Journal of the Optical Society of America.

[17]  S A Burns,et al.  Cone spacing and waveguide properties from cone directionality measurements. , 1999, Journal of the Optical Society of America. A, Optics, image science, and vision.

[18]  Ronald B. Rabbetts,et al.  Clinical Visual Optics , 1984 .

[19]  P. Sieving,et al.  Push–pull model of the primate photopic electroretinogram: A role for hyperpolarizing neurons in shaping the b-wave , 1994, Visual Neuroscience.

[20]  A Bradley,et al.  New methods for discriminating neural and optical losses of vision. , 1993, Optometry and vision science : official publication of the American Academy of Optometry.

[21]  David Williams,et al.  The arrangement of the three cone classes in the living human eye , 1999, Nature.

[22]  Masayuki Horiguchi,et al.  Stray light-induced multifocal electroretinograms. , 2003, Investigative ophthalmology & visual science.

[23]  L. N. Thibos,et al.  Vision beyond the resolution limit: Aliasing in the periphery , 1987, Vision Research.

[24]  M. Kondo,et al.  Recording multifocal electroretinogram on and off responses in humans. , 1998, Investigative ophthalmology & visual science.

[25]  R S Anderson,et al.  The selective effect of optical defocus on detection and resolution acuity in peripheral vision. , 1996, Current eye research.

[26]  Erich E. Sutter,et al.  The field topography of ERG components in man—I. The photopic luminance response , 1992, Vision Research.

[27]  E. Rossi,et al.  The relationship between visual resolution and cone spacing in the human fovea , 2009, Nature Neuroscience.

[28]  Stephen A Burns,et al.  Individual variations in human cone photoreceptor packing density: variations with refractive error. , 2008, Investigative ophthalmology & visual science.

[29]  A T Elliott,et al.  Functional imaging of the retina using the multifocal electroretinograph: a control study. , 1996, The British journal of ophthalmology.

[30]  P. Sieving,et al.  A proximal retinal component in the primate photopic ERG a-wave. , 1994, Investigative ophthalmology & visual science.

[31]  M. Kondo,et al.  Effect of glutamate analogues and inhibitory neurotransmitters on the electroretinograms elicited by random sequence stimuli in rabbits. , 1998, Investigative ophthalmology & visual science.

[32]  J Rovamo,et al.  Resolution of gratings oriented along and across meridians in peripheral vision. , 1982, Investigative ophthalmology & visual science.

[33]  Christine A. Curcio,et al.  The spatial resolution capacity of human foveal retina , 1989, Vision Research.

[34]  W. Verdon,et al.  Topography of the multifocal electroretinogram , 2004, Documenta Ophthalmologica.

[35]  Shaban Demirel,et al.  What limits detection and resolution of short-wavelength sinusoidal gratings across the retina? , 2002, Vision Research.

[36]  L N Thibos,et al.  Acuity perimetry and the sampling theory of visual resolution. , 1998, Optometry and vision science : official publication of the American Academy of Optometry.

[37]  S. Duke-Elder DOCUMENTA OPHTHALMOLOGICA , 1959 .

[38]  M. Seeliger,et al.  Spatial cone activity distribution in diseases of the posterior pole determined by multifocal electroretinography , 1998, Vision Research.

[39]  Toco Y P Chui,et al.  Adaptive-optics imaging of human cone photoreceptor distribution. , 2008, Journal of the Optical Society of America. A, Optics, image science, and vision.

[40]  D. Hood,et al.  Retinal origins of the primate multifocal ERG: implications for the human response. , 2002, Investigative ophthalmology & visual science.

[41]  Donald C. Hood,et al.  ISCEV guidelines for clinical multifocal electroretinography (2007 edition) , 2007, Documenta Ophthalmologica.