A Unified Approach to Quantum Computation and Classical Reversible Computation
暂无分享,去创建一个
[1] Alexis De Vos,et al. Young subgroups for reversible computers , 2008, Adv. Math. Commun..
[3] I. Chuang,et al. Quantum Computation and Quantum Information: Bibliography , 2010 .
[4] Dominique de Werra. Path colorings in bipartite graphs , 2005, Eur. J. Oper. Res..
[5] Birger Raa,et al. INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL J. Phys. A: Math. Gen. 35 (2002) 7063–7078 PII: S0305-4470(02)34943-6 Generating the group of reversible logic gates , 2022 .
[6] Kevin Barraclough,et al. I and i , 2001, BMJ : British Medical Journal.
[7] Gregor von Bochmann,et al. Quick Birkhoff-von Neumann Decomposition Algorithm for Agile All-Photonic Network Cores , 2006, 2006 IEEE International Conference on Communications.
[8] M. Wolf,et al. Sinkhorn normal form for unitary matrices , 2014, 1408.5728.
[9] Lin Chen,et al. Decomposition of bipartite and multipartite unitary gates into the product of controlled unitary gates , 2015, 1501.02708.
[10] Alexis De Vos,et al. Synthesis of Quantum Circuits vs. Synthesis of Classical Reversible Circuits , 2018, Synthesis of Quantum Circuits vs. Synthesis of Classical Reversible Circuits.
[11] Alexis De Vos,et al. Scaling a Unitary Matrix , 2014, Open Syst. Inf. Dyn..
[12] Alexis De Vos,et al. Block-Z X Z synthesis of an arbitrary quantum circuit , 2015, 1512.07240.
[13] H. Führ,et al. A note on factoring unitary matrices , 2018, Linear Algebra and its Applications.
[14] Peter Selinger,et al. Efficient Clifford+T approximation of single-qubit operators , 2012, Quantum Inf. Comput..
[15] Alexis De Vos,et al. Synthesis of reversible logic for nanoelectronic circuits , 2007, Int. J. Circuit Theory Appl..
[16] Hartmut Fuhr,et al. On biunimodular vectors for unitary matrices , 2015, 1506.06738.