A Unified Approach to Quantum Computation and Classical Reversible Computation

The design of a quantum computer and the design of a classical computer can be based on quite similar circuit designs. The former is based on the subgroup structure of the infinite group of unitary matrices, whereas the latter is based on the subgroup structure of the finite group of permutation matrices. Because these two groups display similarities as well as differences, the corresponding circuit designs are comparable but not identical.

[1]  Alexis De Vos,et al.  Young subgroups for reversible computers , 2008, Adv. Math. Commun..

[3]  I. Chuang,et al.  Quantum Computation and Quantum Information: Bibliography , 2010 .

[4]  Dominique de Werra Path colorings in bipartite graphs , 2005, Eur. J. Oper. Res..

[5]  Birger Raa,et al.  INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL J. Phys. A: Math. Gen. 35 (2002) 7063–7078 PII: S0305-4470(02)34943-6 Generating the group of reversible logic gates , 2022 .

[6]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.

[7]  Gregor von Bochmann,et al.  Quick Birkhoff-von Neumann Decomposition Algorithm for Agile All-Photonic Network Cores , 2006, 2006 IEEE International Conference on Communications.

[8]  M. Wolf,et al.  Sinkhorn normal form for unitary matrices , 2014, 1408.5728.

[9]  Lin Chen,et al.  Decomposition of bipartite and multipartite unitary gates into the product of controlled unitary gates , 2015, 1501.02708.

[10]  Alexis De Vos,et al.  Synthesis of Quantum Circuits vs. Synthesis of Classical Reversible Circuits , 2018, Synthesis of Quantum Circuits vs. Synthesis of Classical Reversible Circuits.

[11]  Alexis De Vos,et al.  Scaling a Unitary Matrix , 2014, Open Syst. Inf. Dyn..

[12]  Alexis De Vos,et al.  Block-Z X Z synthesis of an arbitrary quantum circuit , 2015, 1512.07240.

[13]  H. Führ,et al.  A note on factoring unitary matrices , 2018, Linear Algebra and its Applications.

[14]  Peter Selinger,et al.  Efficient Clifford+T approximation of single-qubit operators , 2012, Quantum Inf. Comput..

[15]  Alexis De Vos,et al.  Synthesis of reversible logic for nanoelectronic circuits , 2007, Int. J. Circuit Theory Appl..

[16]  Hartmut Fuhr,et al.  On biunimodular vectors for unitary matrices , 2015, 1506.06738.