Cytogenetic prognostication within medulloblastoma subgroups.

PURPOSE Medulloblastoma comprises four distinct molecular subgroups: WNT, SHH, Group 3, and Group 4. Current medulloblastoma protocols stratify patients based on clinical features: patient age, metastatic stage, extent of resection, and histologic variant. Stark prognostic and genetic differences among the four subgroups suggest that subgroup-specific molecular biomarkers could improve patient prognostication. PATIENTS AND METHODS Molecular biomarkers were identified from a discovery set of 673 medulloblastomas from 43 cities around the world. Combined risk stratification models were designed based on clinical and cytogenetic biomarkers identified by multivariable Cox proportional hazards analyses. Identified biomarkers were tested using fluorescent in situ hybridization (FISH) on a nonoverlapping medulloblastoma tissue microarray (n = 453), with subsequent validation of the risk stratification models. RESULTS Subgroup information improves the predictive accuracy of a multivariable survival model compared with clinical biomarkers alone. Most previously published cytogenetic biomarkers are only prognostic within a single medulloblastoma subgroup. Profiling six FISH biomarkers (GLI2, MYC, chromosome 11 [chr11], chr14, 17p, and 17q) on formalin-fixed paraffin-embedded tissues, we can reliably and reproducibly identify very low-risk and very high-risk patients within SHH, Group 3, and Group 4 medulloblastomas. CONCLUSION Combining subgroup and cytogenetic biomarkers with established clinical biomarkers substantially improves patient prognostication, even in the context of heterogeneous clinical therapies. The prognostic significance of most molecular biomarkers is restricted to a specific subgroup. We have identified a small panel of cytogenetic biomarkers that reliably identifies very high-risk and very low-risk groups of patients, making it an excellent tool for selecting patients for therapy intensification and therapy de-escalation in future clinical trials.

Toshihiro Kumabe | Amar Gajjar | Andrey Korshunov | Nada Jabado | David T. W. Jones | Uri Tabori | Boleslaw Lach | Xin Wang | Olivier Delattre | Franck Bourdeaut | Teiji Tominaga | Eric Bouffet | Stefan Rutkowski | László Bognár | Seung-Ki Kim | Simon Bailey | Anne Jouvet | Ulrich Schüller | Marcel Kool | Nalin Gupta | Giuseppe Cinalli | Vijay Ramaswamy | Maryam Fouladi | Livia Garzia | Shenandoah Robinson | S. Scherer | J. Olson | Erwin G. Van Meir | M. Kool | L. Liau | J. Mora | P. Northcott | S. Pfister | Shin Jung | J. Rutka | C. Hawkins | S. Pomeroy | O. Delattre | I. Pollack | U. Schüller | Yoon-Jae Cho | A. Jouvet | A. Korshunov | K. Muraszko | T. Tominaga | C. Lavarino | R. Wechsler-Reya | W. Weiss | P. French | J. Kros | A. Morrissy | A. Fontebasso | S. Albrecht | P. Hauser | M. Garami | A. Klekner | L. Bognár | M. Remke | Michael D. Taylor | N. Jabado | D. Malkin | C. Eberhart | W. Grajkowska | R. Packer | A. Dubuc | Xiaochong Wu | S. Robinson | S. Rutkowski | R. Thompson | S. Mack | A. Gajjar | J. Phillips | F. Bourdeaut | M. Zollo | L. Garzia | D. Shih | F. Cavalli | V. Ramaswamy | Xin Wang | J. Peacock | Adi Rolider | C. Faria | T. Kumabe | L. Massimi | K. Zitterbart | K. Wang | B. Cho | S. Bailey | J. Lindsey | S. Clifford | M. K. Cooper | U. Tabori | E. Bouffet | Seung-Ki Kim | C. de Torres | E. Michiels | Xing Fan | M. Fouladi | Pasqualino de Antonellis | Yuan Yao | M. Perek-Polnik | F. Doz | M. Fèvre-Montange | Nanne K. Kloosterhof | L. Křen | B. Lach | N. Gupta | J. Leonard | J. Rubin | G. Cinalli | A. Saad | R. Vibhakar | C. Di Rocco | Marc Remke | Betty Luu | Yoon-Jae Cho | Marta Perek-Polnik | Jaume Mora | Michelle Fèvre-Montange | Karel Zitterbart | Leos Kren | Almos Klekner | Peter Hauser | Shin Jung | Luca Massimi | Rajeev Vibhakar | Xing Fan | David Malkin | Michael D. Taylor | Stephen W. Scherer | James T. Rutka | Concezio Di Rocco | Xiaochong Wu | Adi Rolider | Pasqualino De Antonellis | Massimo Zollo | Kyu-Chang Wang | Byung-Kyu Cho | Roger J. Packer | Charles G. Eberhart | Miklós Garami | David J.H. Shih | Paul A. Northcott | Yuan Yao | Adrian M. Dubuc | John Peacock | Stephen C. Mack | A. Sorana Morrissy | Florence M.G. Cavalli | David T.W. Jones | Claudia C. Faria | Young Shin Ra | Jennifer A. Chan | Ali G. Saad | Linda M. Liau | Steffen Albrecht | Adam Fontebasso | Michael K. Cooper | Reid C. Thompson | Janet C. Lindsey | Erna M.C. Michiels | Joanna J. Phillips | Karin M. Muraszko | Robert J. Wechsler-Reya | Ian F. Pollack | William A. Weiss | Ji-Yeoun Lee | Jeffrey R. Leonard | Joshua B. Rubin | Carmen de Torres | Cinzia Lavarino | James M. Olson | Scott L. Pomeroy | Pim J. French | Nanne K. Kloosterhof | Johan M. Kros | Erwin G. Van Meir | Steven C. Clifford | François F. Doz | Cynthia E. Hawkins | Wieslawa A. Grajkowska | Stefan M. Pfister | J. Chan | Ji-Yeoun Lee | B. Luu | Young Shin Ra | M. Perek‐polnik | Á. Klekner | L. Bognár | N. Gupta | Seung-Ki Kim | N. Gupta | J. Leonard | Rajeev Vibhakar | Yuan Yao

[1]  D. Ellison,et al.  Combined Histopathological and Molecular Cytogenetic Stratification of Medulloblastoma Patients , 2004, Clinical Cancer Research.

[2]  Roger E. Taylor,et al.  Definition of disease-risk stratification groups in childhood medulloblastoma using combined clinical, pathologic, and molecular variables. , 2011, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[3]  Paul A. Northcott,et al.  Multiple recurrent genetic events converge on control of histone lysine methylation in medulloblastoma , 2009, Nature Genetics.

[4]  P. Northcott,et al.  The Genetics of Pediatric Brain Tumors , 2010, Current neurology and neuroscience reports.

[5]  David T. W. Jones,et al.  Biological and clinical heterogeneity of MYCN-amplified medulloblastoma , 2012, Acta Neuropathologica.

[6]  W. Mason,et al.  Early aging in adult survivors of childhood medulloblastoma: long-term neurocognitive, functional, and physical outcomes. , 2011, Neuro-Oncology.

[7]  Matthew J. Betts,et al.  Dissecting the genomic complexity underlying medulloblastoma , 2012, Nature.

[8]  P. Lichter,et al.  TP53 mutation is frequently associated with CTNNB1 mutation or MYCN amplification and is compatible with long-term survival in medulloblastoma. , 2010, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[9]  J. Biegel,et al.  Isochromosome 17q Is a Negative Prognostic Factor in Poor-Risk Childhood Medulloblastoma Patients , 2005, Clinical Cancer Research.

[10]  Axel Benner,et al.  Outcome prediction in pediatric medulloblastoma based on DNA copy-number aberrations of chromosomes 6q and 17q and the MYC and MYCN loci. , 2009, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[11]  T. Björk-Eriksson,et al.  Hyperfractionated versus conventional radiotherapy followed by chemotherapy in standard-risk medulloblastoma: results from the randomized multicenter HIT-SIOP PNET 4 trial. , 2012, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[12]  J. Trojanowski,et al.  Neurotrophin receptor TrkC predicts good clinical outcome in medulloblastoma and other primitive neuroectodermal brain tumors. , 2000, Klinische Padiatrie.

[13]  Scott L. Pomeroy,et al.  Molecular subgroups of medulloblastoma: an international meta-analysis of transcriptome, genetic aberrations, and clinical data of WNT, SHH, Group 3, and Group 4 medulloblastomas , 2012, Acta Neuropathologica.

[14]  D. Ellison,et al.  Rapid Diagnosis of Medulloblastoma Molecular Subgroups , 2011, Clinical Cancer Research.

[15]  J. Morgan HOSPITAL FOR SICK CHILDREN. , 1884 .

[16]  O. Delattre,et al.  MYC and MYCN amplification can be reliably assessed by aCGH in medulloblastoma. , 2013, Cancer genetics.

[17]  Stefan M. Pfister,et al.  The clinical implications of medulloblastoma subgroups , 2012, Nature Reviews Neurology.

[18]  P. Northcott,et al.  FISH and chips: the recipe for improved prognostication and outcomes for children with medulloblastoma. , 2011, Cancer genetics.

[19]  S. Pomeroy,et al.  Expression of the neurotrophin receptor TrkC is linked to a favorable outcome in medulloblastoma. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[20]  R. Arceci Adult and Pediatric Medulloblastomas Are Genetically Distinct and Require Different Algorithms for Molecular Risk Stratification , 2010 .

[21]  Scott L. Pomeroy,et al.  Rapid, reliable, and reproducible molecular sub-grouping of clinical medulloblastoma samples , 2011, Acta Neuropathologica.

[22]  Arie Perry,et al.  Medulloblastoma: clinicopathological correlates of SHH, WNT, and non-SHH/WNT molecular subgroups , 2011, Acta Neuropathologica.

[23]  Paul A. Northcott,et al.  DNA methylation profiling of medulloblastoma allows robust subclassification and improved outcome prediction using formalin-fixed biopsies , 2013, Acta Neuropathologica.

[24]  D. Grzybicki,et al.  Subtypes of medulloblastoma have distinct developmental origins , 2012 .

[25]  R. McLendon,et al.  MYCC and MYCN oncogene amplification in medulloblastoma. A fluorescence in situ hybridization study on paraffin sections from the Children's Oncology Group. , 2002, Archives of pathology & laboratory medicine.

[26]  S. Joos,et al.  Molecular analysis of childhood primitive neuroectodermal tumors defines markers associated with poor outcome. , 1998, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[27]  S. Scherer,et al.  Subgroup-specific alternative splicing in medulloblastoma , 2012, Acta Neuropathologica.

[28]  J. Uhm Medulloblastoma Comprises Four Distinct Molecular Variants , 2011 .

[29]  Claire L Weston,et al.  beta-Catenin status predicts a favorable outcome in childhood medulloblastoma: the United Kingdom Children's Cancer Study Group Brain Tumour Committee. , 2005, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[30]  K. Evankovich,et al.  Neurocognitive outcome 12 months following cerebellar mutism syndrome in pediatric patients with medulloblastoma. , 2010, Neuro-oncology.

[31]  S. Pomeroy,et al.  Gain of 1q Is a Potential Univariate Negative Prognostic Marker for Survival in Medulloblastoma , 2007, Clinical Cancer Research.

[32]  P. Northcott,et al.  Molecular subgroups of medulloblastoma , 2012, Expert review of neurotherapeutics.

[33]  O. Delattre,et al.  Prognostic classification of pediatric medulloblastoma based on chromosome 17p loss, expression of MYCC and MYCN, and Wnt pathway activation. , 2012, Neuro-oncology.

[34]  Elaine R. Mardis,et al.  Novel mutations target distinct subgroups of medulloblastoma , 2012, Nature.

[35]  C. Dang,et al.  Histopathological and Molecular Prognostic Markers in Medulloblastoma: c‐myc, N‐myc, TrkC, and Anaplasia , 2004, Journal of neuropathology and experimental neurology.

[36]  Axel Benner,et al.  Genomic and protein expression profiling identifies CDK6 as novel independent prognostic marker in medulloblastoma. , 2005, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[37]  David T. W. Jones,et al.  Methylation of the TERT promoter and risk stratification of childhood brain tumours: an integrative genomic and molecular study. , 2013, The Lancet. Oncology.

[38]  Axel Benner,et al.  FSTL5 is a marker of poor prognosis in non-WNT/non-SHH medulloblastoma. , 2011, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[39]  S. Pfister,et al.  MYC family amplification and clinical risk-factors interact to predict an extremely poor prognosis in childhood medulloblastoma , 2011, Acta Neuropathologica.

[40]  Zev A. Binder,et al.  The Genetic Landscape of the Childhood Cancer Medulloblastoma , 2011, Science.

[41]  D. Ellison,et al.  Chromosome 1q gain is not associated with a poor outcome in childhood medulloblastoma: Requirements for the validation of potential prognostic biomarkers , 2009, Cell Cycle.

[42]  P. Stankiewicz,et al.  Early recurrence in standard-risk medulloblastoma patients with the common idic(17)(p11.2) rearrangement. , 2012, Neuro-oncology.

[43]  T. Merchant,et al.  Risk-adapted craniospinal radiotherapy followed by high-dose chemotherapy and stem-cell rescue in children with newly diagnosed medulloblastoma (St Jude Medulloblastoma-96): long-term results from a prospective, multicentre trial. , 2006, The Lancet. Oncology.

[44]  C. Hawkins,et al.  Impact of radiation avoidance on survival and neurocognitive outcome in infant medulloblastoma , 2009, Current oncology.

[45]  Jill P. Mesirov,et al.  MEDULLOBLASTOMA EXOME SEQUENCING UNCOVERS SUBTYPE-SPECIFIC SOMATIC MUTATIONS , 2012, Nature.

[46]  R. McLendon,et al.  Prognostic implications of chromosome 17p deletions in human medulloblastomas , 2005, Journal of Neuro-Oncology.

[47]  D. Ellison,et al.  Wnt/Wingless Pathway Activation and Chromosome 6 Loss Characterise a Distinct Molecular Sub-Group of Medulloblastomas Associated with a Favourable Prognosis , 2006, Cell cycle.

[48]  R. Arceci Universal Poor Survival in Children With Medulloblastoma Harboring Somatic TP53 Mutations , 2010 .

[49]  R. Perry,et al.  Prognostic significance of the c-erbB-2 oncogene product in childhood medulloblastoma. , 1995, British Journal of Cancer.

[50]  Scott L. Pomeroy,et al.  Medulloblastomics: the end of the beginning , 2012, Nature Reviews Cancer.

[51]  S. Croul,et al.  Adult medulloblastoma comprises three major molecular variants. , 2011, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[52]  R. McLendon,et al.  OTX2 is critical for the maintenance and progression of Shh-independent medulloblastomas. , 2010, Cancer research.

[53]  J. Crolla,et al.  Clinical and molecular stratification of disease risk in medulloblastoma , 2001, British Journal of Cancer.

[54]  David T. W. Jones,et al.  Genome Sequencing of Pediatric Medulloblastoma Links Catastrophic DNA Rearrangements with TP53 Mutations , 2012, Cell.

[55]  V. P. Collins,et al.  Chromosome 17 alterations identify good-risk and poor-risk tumors independently of clinical factors in medulloblastoma , 2011, Neuro-Oncology.

[56]  P. Northcott,et al.  Genomics of medulloblastoma: from Giemsa-banding to next-generation sequencing in 20 years. , 2010, Neurosurgical focus.

[57]  R H Perry,et al.  Prognostic significance of HER2 and HER4 coexpression in childhood medulloblastoma. , 1997, Cancer research.

[58]  J. Mesirov,et al.  Integrative genomic analysis of medulloblastoma identifies a molecular subgroup that drives poor clinical outcome. , 2011, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[59]  Steven J. M. Jones,et al.  Subgroup-specific structural variation across 1,000 medulloblastoma genomes , 2012, Nature.

[60]  T. Curran,et al.  Genomics identifies medulloblastoma subgroups that are enriched for specific genetic alterations. , 2006, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[61]  Dirk Troost,et al.  Integrated Genomics Identifies Five Medulloblastoma Subtypes with Distinct Genetic Profiles, Pathway Signatures and Clinicopathological Features , 2008, PloS one.

[62]  M. Kool,et al.  Molecular diagnostics of CNS embryonal tumors , 2010, Acta Neuropathologica.

[63]  Paul A. Northcott,et al.  Pediatric and adult sonic hedgehog medulloblastomas are clinically and molecularly distinct , 2011, Acta Neuropathologica.

[64]  Scott L. Pomeroy,et al.  Molecular subgroups of medulloblastoma: the current consensus , 2011, Acta Neuropathologica.