Unsupervised Learning of Cone Spectral Classes from Natural Images

The first step in the evolution of primate trichromatic color vision was the expression of a third cone class not present in ancestral mammals. This observation motivates a fundamental question about the evolution of any sensory system: how is it possible to detect and exploit the presence of a novel sensory class? We explore this question in the context of primate color vision. We present an unsupervised learning algorithm capable of both detecting the number of spectral cone classes in a retinal mosaic and learning the class of each cone using the inter-cone correlations obtained in response to natural image input. The algorithm's ability to classify cones is in broad agreement with experimental evidence about functional color vision for a wide range of mosaic parameters, including those characterizing dichromacy, typical trichromacy, anomalous trichromacy, and possible tetrachromacy.

[1]  R. W. Rodieck The First Steps in Seeing , 1998 .

[2]  Heidi Hofer,et al.  Organization of the Human Trichromatic Cone Mosaic , 2003, The Journal of Neuroscience.

[3]  Michael S. Landy,et al.  Learning Receptor Positions , 1991 .

[4]  Nick Fogt,et al.  Ocular tracking of transiently occluded targets , 2010 .

[5]  Anthony M. Norcia,et al.  Development of contrast sensitivity in the human infant , 1990, Vision Research.

[6]  Robert Shapley,et al.  Specificity of cone connections in the retina and color vision. Focus on "specificity of cone inputs to macaque retinal ganglion cells". , 2006, Journal of neurophysiology.

[7]  A. Stockman,et al.  The spectral sensitivities of the middle- and long-wavelength-sensitive cones derived from measurements in observers of known genotype , 2000, Vision Research.

[8]  Paul R. Martin,et al.  Random Wiring in the Midget Pathway of Primate Retina , 2006, The Journal of Neuroscience.

[9]  Walter Makous,et al.  Comment on "Emergence of Novel Color Vision in Mice Engineered to Express a Human Cone Photopigment" , 2007, Science.

[10]  David Williams,et al.  Different sensations from cones with the same photopigment. , 2005, Journal of vision.

[11]  Timothy A. Machado,et al.  Functional connectivity in the retina at the resolution of photoreceptors , 2010, Nature.

[12]  D. Teller,et al.  Scotopic vision, color vision, and stereopsis in infants. , 1982, Current eye research.

[13]  Ayan Chakrabarti,et al.  Statistics of real-world hyperspectral images , 2011, CVPR 2011.

[14]  J D Mollon,et al.  The dimensionality of color vision in carriers of anomalous trichromacy. , 2010, Journal of vision.

[15]  J. Mollon,et al.  Molecular evolution of trichromacy in primates , 1998, Vision Research.

[16]  G. J. Burton,et al.  Color and spatial structure in natural scenes. , 1987, Applied optics.

[17]  Jay Neitz,et al.  Estimates of L:M cone ratio from ERG flicker photometry and genetics. , 2002, Journal of vision.

[18]  Jeremy Nathans,et al.  Role of a locus control region in the mutually exclusive expression of human red and green cone pigment genes , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[19]  Joel Pokorny,et al.  Congenital and acquired color vision defects , 1979 .

[20]  A L Nagy,et al.  Four cone pigments in women heterozygous for color deficiency. , 1981, Journal of the Optical Society of America.

[21]  Heidi Hofer,et al.  Trichromatic reconstruction from the interleaved cone mosaic: Bayesian model and the color appearance of small spots. , 2008, Journal of vision.

[22]  David J. Calkins,et al.  Neuronal chemistry and functional organization in the primate visual system , 1998, Trends in Neurosciences.

[23]  Subhabrata Chakraborti,et al.  Nonparametric Statistical Inference , 2011, International Encyclopedia of Statistical Science.

[24]  C. Koch,et al.  The relation of phase noise and luminance contrast to overt attention in complex visual stimuli. , 2006, Journal of vision.

[25]  J. Nathans,et al.  Molecular genetics of human color vision: the genes encoding blue, green, and red pigments. , 1986, Science.

[26]  J. L. Schnapf,et al.  Surround Antagonism in Macaque Cone Photoreceptors , 2003, Journal of Neuroscience.

[27]  Akimichi Kaneko,et al.  pH Changes in the Invaginating Synaptic Cleft Mediate Feedback from Horizontal Cells to Cone Photoreceptors by Modulating Ca2+ Channels , 2003, The Journal of general physiology.

[28]  Michael S. Landy,et al.  The Design of Chromatically Opponent Receptive Fields , 1991 .

[29]  J. Mollon,et al.  The evolution of trichromatic color vision by opsin gene duplication in New World and Old World primates. , 1999, Genome research.

[30]  T Troscianko,et al.  Color and luminance information in natural scenes. , 1998, Journal of the Optical Society of America. A, Optics, image science, and vision.

[31]  G H Jacobs,et al.  Spectral tuning of pigments underlying red-green color vision. , 1991, Science.

[32]  Jay Neitz,et al.  Trichromatic colour vision in New World monkeys , 1996, Nature.

[33]  G. H. Jacobs,et al.  Response to Comment on "Emergence of Novel Color Vision in Mice Engineered to Express a Human Cone Photopigment" , 2007, Science.

[34]  Barry B. Lee,et al.  Spatial distributions of cone inputs to cells of the parvocellular pathway investigated with cone-isolating gratings. , 2012, Journal of the Optical Society of America. A, Optics, image science, and vision.

[35]  Austin Roorda,et al.  Adaptive Optics Scanning Laser Ophthalmoscope-Based Microperimetry , 2011, Optometry and vision science : official publication of the American Academy of Optometry.

[36]  W. D. Wright The characteristics of tritanopia. , 1952, Journal of the Optical Society of America.

[37]  J. Kruskal Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis , 1964 .

[38]  Laurence T. Maloney,et al.  Assertion : Two Methods for Calibrating a Linear Visual System , 2007 .

[39]  P. Walraven Fundamental chromaticity diagram with physiological axes , 1999 .

[40]  Vijay Balasubramanian,et al.  Natural Images from the Birthplace of the Human Eye , 2011, PloS one.

[41]  J. D. Mollon,et al.  A study of women heterozygous for colour deficiencies , 1993, Vision Research.

[42]  Yoichi Sugita,et al.  Experience in Early Infancy Is Indispensable for Color Perception , 2004, Current Biology.

[43]  M. Banks,et al.  Optical and photoreceptor immaturities limit the spatial and chromatic vision of human neonates. , 1988, Journal of the Optical Society of America. A, Optics and image science.

[44]  Angela M. Brown Development of visual sensitivity to light and color vision in human infants: A critical review , 1990, Vision Research.

[45]  David Williams,et al.  The arrangement of the three cone classes in the living human eye , 1999, Nature.

[46]  Jay Neitz,et al.  Expression of L cone pigment gene subtypes in females , 1998, Vision Research.

[47]  D. Foster,et al.  Frequency of metamerism in natural scenes. , 2007, Journal of the Optical Society of America. A, Optics, image science, and vision.

[48]  Jay Neitz,et al.  Gene therapy for red-green colour blindness in adult primates , 2009, Nature.

[49]  D H Brainard,et al.  The Psychophysics Toolbox. , 1997, Spatial vision.

[50]  David R. Williams,et al.  The design of chromatically opponent receptive fields , 1991 .

[51]  A. Noë,et al.  A sensorimotor account of vision and visual consciousness. , 2001, The Behavioral and brain sciences.

[52]  J. Neitz,et al.  Molecular genetics of color vision and color vision defects. , 2000, Archives of ophthalmology.

[53]  Eero P. Simoncelli 4.7 – Statistical Modeling of Photographic Images , 2005 .

[54]  Barry B. Lee,et al.  Specificity of cone inputs to macaque retinal ganglion cells. , 2006, Journal of neurophysiology.

[55]  T. Sejnowski,et al.  Cone selectivity derived from the responses of the retinal cone mosaic to natural scenes. , 2007, Journal of vision.