Estimation of structural wave numbers from spatially sparse response measurements.
暂无分享,去创建一个
[1] T. Sarkar,et al. Using the matrix pencil method to estimate the parameters of a sum of complex exponentials , 1995 .
[2] L. Kirkup,et al. Curve stripping and nonlinear fitting of polyexponential functions to data using a microcomputer , 1988 .
[3] Jürg Dual,et al. High-resolution analysis of the complex wave spectrum in a cylindrical shell containing a viscoelastic medium. Part II. Experimental results versus theory , 1997 .
[4] Earl G. Williams,et al. Complex wave‐number decomposition of structural vibrations , 1993 .
[5] R. Kumaresan,et al. Estimating the parameters of exponentially damped sinusoids and pole-zero modeling in noise , 1982 .
[6] Stephen J. Wright,et al. Algorithms for Nonlinear Least Squares with Linear Inequality Constraints , 1985 .
[7] Ramdas Kumaresan,et al. An algorithm for pole-zero modeling and spectral analysis , 1986, IEEE Trans. Acoust. Speech Signal Process..
[8] E. Kerwin. Damping of Flexural Waves by a Constrained Viscoelastic Layer , 1959 .
[9] R. Kumaresan,et al. Estimation of frequencies of multiple sinusoids: Making linear prediction perform like maximum likelihood , 1982, Proceedings of the IEEE.
[10] T. Plona,et al. Axisymmetric wave propagation in fluid‐loaded cylindrical shells. I: Theory , 1992 .
[11] Pierre E. Dupont,et al. A WAVE APPROACH TO ESTIMATING FREQUENCY-DEPENDENT DAMPING UNDER TRANSIENT LOADING , 2000 .
[12] Tapan K. Sarkar,et al. Matrix pencil method for estimating parameters of exponentially damped/undamped sinusoids in noise , 1990, IEEE Trans. Acoust. Speech Signal Process..
[13] G. Bromage. A QUANTIFICATION OF THE HAZARDS OF FITTING SUMS OF EXPONENTIALS TO NOISY DATA , 1983 .
[14] En-Jui Lee,et al. Calculation of the Complex Modulus of Linear Viscoelastic Materials from Vibrating Reed Measurements , 1955 .
[15] Randolph L. Moses,et al. Statistical analysis of TLS-based prony techniques , 1994, Autom..
[16] T. Plona,et al. Axisymmetric wave propagation in fluid‐loaded cylindrical shells: Theory versus experiment. , 1992 .
[17] Jürg Dual,et al. High-resolution analysis of the complex wave spectrum in a cylindrical shell containing a viscoelastic medium. Part I. Theory and numerical results , 1997 .