Limits on Efficient Computation in the Physical World

More than a speculative technology, quantum computing seems to challenge our most basic intuitions about how the physical world should behave. In this thesis I show that, while some intuitions from classical computer science must be jettisoned in the light of modern physics, many others emerge nearly unscathed; and I use powerful tools from computational complexity theory to help determine which are which. In the first part of the thesis, I attack the common belief that quantum computing resembles classical exponential parallelism, by showing that quantum computers would face serious limitations on a wider range of problems than was previously known. In particular, any quantum algorithm that solves the collision problem—that of deciding whether a sequence of n integers is one-to-one or two-to-one—must query the sequence Ω (n1/5) times. This resolves a question that was open for years; previously no lower bound better than constant was known. A corollary is that there is no “black-box” quantum algorithm to break cryptographic hash functions or solve the Graph Isomorphism problem in polynomial time. I also show that relative to an oracle, quantum computers could not solve NP-complete problems in polynomial time, even with the help of nonuniform “quantum advice states”; and that any quantum algorithm needs Ω (2n/4/n) queries to find a local minimum of a black-box function on the n-dimensional hypercube. Surprisingly, the latter result also leads to new classical lower bounds for the local search problem. Finally, I give new lower bounds on quantum one-way communication complexity, and on the quantum query complexity of total Boolean functions and recursive Fourier sampling. The second part of the thesis studies the relationship of the quantum computing model to physical reality. I first examine the arguments of Leonid Levin, Stephen Wolfram, and others who believe quantum computing to be fundamentally impossible. I find their arguments unconvincing without a “Sure/Shor separator”—a criterion that separates the already-verified quantum states from those that appear in Shor's factoring algorithm. I argue that such a separator should be based on a complexity classification of quantum states, and go on to create such a classification. Next I ask what happens to the quantum computing model if we take into account that the speed of light is finite—and in particular, whether Grover's algorithm still yields a quadratic speedup for searching a database. Refuting a claim by Benioff, I show that the surprising answer is yes. Finally, I analyze hypothetical models of computation that go even beyond quantum computing. I show that many such models would be as powerful as the complexity class PP, and use this fact to give a simple, quantum computing based proof that PP is closed under intersection. On the other hand, I also present one model—wherein we could sample the entire history of a hidden variable—that appears to be more powerful than standard quantum computing, but only slightly so.

[1]  Georg Schnitger,et al.  Las Vegas Versus Determinism for One-way Communication Complexity, Finite Automata, and Polynomial-time Computations , 1997, STACS.

[2]  Richard P. Brent,et al.  The Parallel Evaluation of General Arithmetic Expressions , 1974, JACM.

[3]  Andrew M. Childs,et al.  Spatial search by quantum walk , 2003, quant-ph/0306054.

[4]  Scott Aaronson,et al.  Quantum lower bounds for the collision and the element distinctness problems , 2004, JACM.

[5]  Andris Ambainis,et al.  Quantum search of spatial regions , 2003, 44th Annual IEEE Symposium on Foundations of Computer Science, 2003. Proceedings..

[6]  Anthony J Leggett,et al.  Testing the limits of quantum mechanics: motivation, state of play, prospects , 2002 .

[7]  John Watrous,et al.  Succinct quantum proofs for properties of finite groups , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[8]  A. Razborov Quantum communication complexity of symmetric predicates , 2002, quant-ph/0204025.

[9]  J. Bekenstein Universal upper bound on the entropy-to-energy ratio for bounded systems , 1981, Jacob Bekenstein.

[10]  H. Briegel,et al.  Persistent entanglement in arrays of interacting particles. , 2000, Physical review letters.

[11]  Farrokh Vatan,et al.  On the Computation of Boolean Functions by Analog Circuits of Bounded Fan-In , 1997, J. Comput. Syst. Sci..

[12]  Alex Samorodnitsky,et al.  A Deterministic Strongly Polynomial Algorithm for Matrix Scaling and Approximate Permanents , 1998, STOC '98.

[13]  Michael Clausen,et al.  Algebraic complexity theory , 1997, Grundlehren der mathematischen Wissenschaften.

[14]  Andris Ambainis,et al.  Computing with highly mixed states (extended abstract) , 2000, STOC '00.

[15]  James B. Hartle,et al.  Quantum Mechanics in the Light of Quantum Cosmology , 2018, 1803.04605.

[16]  Nicolas Gisin,et al.  Weinberg's non-linear quantum mechanics and supraluminal communications , 1990 .

[17]  Amit Sahai,et al.  A complete promise problem for statistical zero-knowledge , 1997, Proceedings 38th Annual Symposium on Foundations of Computer Science.

[18]  Oded Goldreich,et al.  On the limits of non-approximability of lattice problems , 1998, STOC '98.

[19]  Edward Farhi,et al.  An Example of the Difference Between Quantum and Classical Random Walks , 2002, Quantum Inf. Process..

[20]  P. Grangier,et al.  Experimental Realization of Einstein-Podolsky-Rosen-Bohm Gedankenexperiment : A New Violation of Bell's Inequalities , 1982 .

[21]  Shor,et al.  Good quantum error-correcting codes exist. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[22]  Andris Ambainis,et al.  Quantum lower bounds by quantum arguments , 2000, STOC '00.

[23]  Shafi Goldwasser,et al.  Private coins versus public coins in interactive proof systems , 1986, STOC '86.

[24]  Scott Aaronson,et al.  Lower bounds for local search by quantum arguments , 2003, STOC '04.

[25]  László Babai Bounded Round Interactive Proofs in Finite Groups , 1992, SIAM J. Discret. Math..

[26]  Harry Buhrman,et al.  Quantum Computing and Communication Complexity , 2001, Bull. EATCS.

[27]  Leslie G. Valiant,et al.  NP is as easy as detecting unique solutions , 1985, STOC '85.

[28]  Lance Fortnow,et al.  Complexity limitations on quantum computation , 1999, J. Comput. Syst. Sci..

[29]  Noam Nisan,et al.  CREW PRAMS and decision trees , 1989, STOC '89.

[30]  Avi Wigderson,et al.  Quantum vs. classical communication and computation , 1998, STOC '98.

[31]  J. Lorenz,et al.  On the scaling of multidimensional matrices , 1989 .

[32]  G. Lazarides Introduction to Cosmology , 1999 .

[33]  Gillespie Why quantum mechanics cannot be formulated as a Markov process. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[34]  John Gill,et al.  Relative to a Random Oracle A, PA != NPA != co-NPA with Probability 1 , 1981, SIAM J. Comput..

[35]  Andris Ambainis,et al.  Coins make quantum walks faster , 2004, SODA '05.

[36]  D. Deutsch Quantum theory, the Church–Turing principle and the universal quantum computer , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[37]  Hartmut Klauck,et al.  Quantum and classical strong direct product theorems and optimal time-space tradeoffs , 2004, 45th Annual IEEE Symposium on Foundations of Computer Science.

[38]  Scott Aaronson,et al.  Multilinear formulas and skepticism of quantum computing , 2003, STOC '04.

[39]  Scott Aaronson,et al.  NP-complete Problems and Physical Reality , 2005, Electron. Colloquium Comput. Complex..

[40]  Umesh V. Vazirani,et al.  How powerful is adiabatic quantum computation? , 2001, Proceedings 2001 IEEE International Conference on Cluster Computing.

[41]  E. Cheney Introduction to approximation theory , 1966 .

[42]  Elliott Ward Cheney,et al.  A Comparison of Uniform Approximations on an Interval and a Finite Subset Thereof , 1966 .

[43]  Deutsch,et al.  Quantum mechanics near closed timelike lines. , 1991, Physical review. D, Particles and fields.

[44]  Michael E. Saks,et al.  Quantum query complexity and semi-definite programming , 2003, 18th IEEE Annual Conference on Computational Complexity, 2003. Proceedings..

[45]  Stathis Zachos,et al.  Does co-NP Have Short Interactive Proofs? , 1987, Inf. Process. Lett..

[46]  G. Aeppli,et al.  Entangled quantum state of magnetic dipoles , 2003, Nature.

[47]  L. Hardy Quantum Theory From Five Reasonable Axioms , 2001, quant-ph/0101012.

[48]  Andreas J. Winter Quantum and classical message identification via quantum channels , 2005, Quantum Inf. Comput..

[49]  Scott Aaronson,et al.  Improved Simulation of Stabilizer Circuits , 2004, ArXiv.

[50]  David Deutsch Quantum theory of probability and decisions , 1999, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[51]  Clifford Stein,et al.  Introduction to Algorithms, 2nd edition. , 2001 .

[52]  Scott Aaronson,et al.  The complexity of agreement , 2004, STOC '05.

[53]  Omer Reingold,et al.  Undirected ST-connectivity in log-space , 2005, STOC '05.

[54]  Samuel R. Buss,et al.  Size-Depth Tradeoffs for Boolean Fomulae , 1994, Inf. Process. Lett..

[55]  A. Gleason Measures on the Closed Subspaces of a Hilbert Space , 1957 .

[56]  Christof Zalka zalka Using Grover’s quantum algorithm for searching actual databases , 2000 .

[57]  Andrew M. Childs,et al.  Spatial search and the Dirac equation , 2004 .

[58]  Craig A. Tovey,et al.  Dividing and Conquering the Square , 1993, Discret. Appl. Math..

[59]  Dorit Aharonov,et al.  Quantum NP - A Survey , 2002, quant-ph/0210077.

[60]  R. Cleve,et al.  Quantum fingerprinting. , 2001, Physical review letters.

[61]  Dorit Aharonov,et al.  Fault-tolerant quantum computation with constant error , 1997, STOC '97.

[62]  Stephen Wolfram,et al.  A New Kind of Science , 2003, Artificial Life.

[63]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and EPR channels , 1993 .

[64]  G. Vidal Efficient classical simulation of slightly entangled quantum computations. , 2003, Physical review letters.

[65]  Cristopher Moore,et al.  Counting, fanout and the complexity of quantum ACC , 2002, Quantum Inf. Comput..

[66]  Michael Sipser,et al.  A complexity theoretic approach to randomness , 1983, STOC.

[67]  Raphael Bousso Positive vacuum energy and the N-bound , 2000 .

[68]  Richard Askey CHEBYSHEV POLYNOMIALS From Approximation Theory to Algebra and Number Theory , 1991 .

[69]  Lance Fortnow One complexity theorist's view of quantum computing , 2000, Electron. Notes Theor. Comput. Sci..

[70]  Scott Aaronson,et al.  Limitations of quantum advice and one-way communication , 2004, Proceedings. 19th IEEE Annual Conference on Computational Complexity, 2004..

[71]  Roman Smolensky,et al.  Algebraic methods in the theory of lower bounds for Boolean circuit complexity , 1987, STOC.

[72]  G. Brassard,et al.  Oracle Quantum Computing , 1992, Workshop on Physics and Computation.

[73]  Paul Benioff Space Searches with a Quantum Robot , 2000 .

[74]  A. Ekert,et al.  Universality in quantum computation , 1995, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[75]  G. Brassard,et al.  Quantum Amplitude Amplification and Estimation , 2000, quant-ph/0005055.

[76]  Silvio Micali,et al.  Proofs that yield nothing but their validity or all languages in NP have zero-knowledge proof systems , 1991, JACM.

[77]  D. Bohm A SUGGESTED INTERPRETATION OF THE QUANTUM THEORY IN TERMS OF "HIDDEN" VARIABLES. II , 1952 .

[78]  Terry Rudolph,et al.  Quantum searching a classical database (or how we learned to stop worrying and love the bomb) , 2002 .

[79]  Alexei Y. Kitaev,et al.  Quantum measurements and the Abelian Stabilizer Problem , 1995, Electron. Colloquium Comput. Complex..

[80]  Yaoyun Shi Both Toffoli and controlled-NOT need little help to do universal quantum computing , 2003, Quantum Inf. Comput..

[81]  Umesh V. Vazirani,et al.  Quantum mechanical algorithms for the nonabelian hidden subgroup problem , 2001, STOC '01.

[82]  Christos H. Papadimitriou,et al.  On Total Functions, Existence Theorems and Computational Complexity , 1991, Theor. Comput. Sci..

[83]  Gilles Brassard,et al.  Tight bounds on quantum searching , 1996, quant-ph/9605034.

[84]  Daniel A. Spielman,et al.  PP is closed under intersection , 1991, STOC '91.

[85]  R. Impagliazzo,et al.  P=BPP unless E has sub-exponential circuits: Derandomizing the XOR Lemma , 2002 .

[86]  L. Marchildon,et al.  Two-particle interference in standard and Bohmian quantum mechanics , 2003 .

[87]  Todd A. Brun Computers with Closed Timelike Curves Can Solve Hard Problems Efficiently , 2002, ArXiv.

[88]  Mark Ettinger,et al.  On Quantum Algorithms for Noncommutative Hidden Subgroups , 1998, STACS.

[89]  Umesh V. Vazirani,et al.  Quantum complexity theory , 1993, STOC.

[90]  Scott Aaronson,et al.  Book Review: A new kind of science , 2002 .

[91]  Umesh V. Vazirani,et al.  Molecular scale heat engines and scalable quantum computation , 1999, STOC '99.

[92]  H. Warren Lower bounds for approximation by nonlinear manifolds , 1968 .

[93]  Eyal Kushilevitz,et al.  Communication Complexity , 1997, Adv. Comput..

[94]  R. Feynman Simulating physics with computers , 1999 .

[95]  Elham Kashefi,et al.  Comparison of quantum oracles , 2002 .

[96]  T. J. Rivlin Chebyshev polynomials : from approximation theory to algebra and number theory , 1990 .

[97]  D. Deutsch,et al.  Rapid solution of problems by quantum computation , 1992, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[98]  Andrew Chi-Chih Yao,et al.  Some complexity questions related to distributive computing(Preliminary Report) , 1979, STOC.

[99]  C. Fuchs,et al.  Unknown Quantum States: The Quantum de Finetti Representation , 2001, quant-ph/0104088.

[100]  G. Hooft Quantum gravity as a dissipative deterministic system , 1999, gr-qc/9903084.

[101]  Hartmut Klauck,et al.  Quantum time-space tradeoffs for sorting , 2002, STOC '03.

[102]  Vijay Patel,et al.  Quantum superposition of distinct macroscopic states , 2000, Nature.

[103]  A. Shimony,et al.  Bell’s theorem without inequalities , 1990 .

[104]  Ingo Wegener,et al.  A Note on the Relations Between Critical and Sensitive Complexity , 1989, J. Inf. Process. Cybern..

[105]  A. G.,et al.  MEASUREMENTS OF AND FROM 42 HIGH-REDSHIFT SUPERNOVAE , 1998 .

[106]  Donna Crystal Llewellyn,et al.  Local optimization on graphs , 1989, Discret. Appl. Math..

[107]  Johan Håstad,et al.  Some optimal inapproximability results , 2001, JACM.

[108]  J. Cronin,et al.  CP Symmetry Violation: The Search for Its Origin. , 1981, Science.

[109]  Ashwin Nayak,et al.  Optimal lower bounds for quantum automata and random access codes , 1999, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039).

[110]  Nikolai K. Vereshchagin,et al.  Arthur-Merlin Games in Boolean Decision Trees , 1999, J. Comput. Syst. Sci..

[111]  Sean Hallgren,et al.  Quantum algorithms for some hidden shift problems , 2003, SODA '03.

[112]  Ran Raz Multilinear-NC1 != Multilinear-NC2 , 2004, Electron. Colloquium Comput. Complex..

[113]  Lance Fortnow,et al.  PP is Closed Under Truth-Table Reductions , 1996, Inf. Comput..

[114]  Scott Aaronson,et al.  Algorithms for Boolean Function Query Properties , 2001, SIAM J. Comput..

[115]  Pawel Wocjan,et al.  Cooling and Low Energy State Preparation for 3-local Hamiltonians are FQMA-complete , 2003 .

[116]  Alexander A. Razborov,et al.  Natural Proofs , 1997, J. Comput. Syst. Sci..

[117]  D. R. Fulkerson,et al.  Flows in Networks. , 1964 .

[118]  E. Farhi,et al.  A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem , 2001, Science.

[119]  Stephen A. Fenner,et al.  Determining acceptance possibility for a quantum computation is hard for the polynomial hierarchy , 1998, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[120]  Andris Ambainis,et al.  A Note on Quantum Black-Box Complexity of Almost all Boolean Functions , 1998, Inf. Process. Lett..

[121]  Robert B. Griffiths Choice of Consistent Family, and Quantum Incompatibility , 1998 .

[122]  H. Briegel,et al.  Measurement-based quantum computation on cluster states , 2003, quant-ph/0301052.

[123]  D. Aldous Minimization Algorithms and Random Walk on the $d$-Cube , 1983 .

[124]  Richard E. Ladner,et al.  On the Structure of Polynomial Time Reducibility , 1975, JACM.

[125]  Lov K. Grover A fast quantum mechanical algorithm for database search , 1996, STOC '96.

[126]  Daniel R. Simon,et al.  On the power of quantum computation , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[127]  Richard Sinkhorn A Relationship Between Arbitrary Positive Matrices and Doubly Stochastic Matrices , 1964 .

[128]  Weber,et al.  Unified dynamics for microscopic and macroscopic systems. , 1986, Physical review. D, Particles and fields.

[129]  J. Polchinski,et al.  Weinberg's nonlinear quantum mechanics and the Einstein-Podolsky-Rosen paradox. , 1991, Physical review letters.

[130]  Masao Nagasawa,et al.  Transformations of diffusion and Schrödinger processes , 1989 .

[131]  Miklos Santha,et al.  Quantum and Classical Query Complexities of Local Search Are Polynomially Related , 2004, STOC '04.

[132]  Daniel A. Spielman,et al.  Exponential algorithmic speedup by a quantum walk , 2002, STOC '03.

[133]  Ronald de Wolf,et al.  Improved Quantum Communication Complexity Bounds for Disjointness and Equality , 2001, STACS.

[134]  Michael Sipser,et al.  Parity, circuits, and the polynomial-time hierarchy , 1981, 22nd Annual Symposium on Foundations of Computer Science (sfcs 1981).

[135]  Andris Ambainis,et al.  Dense quantum coding and quantum finite automata , 2002, JACM.

[136]  G. Brassard,et al.  Quantum Communication Complexity , 2003 .

[137]  Michael Barr,et al.  The Emperor's New Mind , 1989 .

[138]  Randall Pruim,et al.  Relativized separation of EQP from PNP , 2001, Inf. Process. Lett..

[139]  V. Fitch,et al.  The discovery of charge conjugation--parity asymmetry. , 1981, Science.

[140]  Noam Nisan,et al.  Hardness vs Randomness , 1994, J. Comput. Syst. Sci..

[141]  Andris Ambainis,et al.  Polynomial degree vs. quantum query complexity , 2003, 44th Annual IEEE Symposium on Foundations of Computer Science, 2003. Proceedings..

[142]  Scott Aaronson,et al.  Quantum certificate complexity , 2002, 18th IEEE Annual Conference on Computational Complexity, 2003. Proceedings..

[143]  Nader H. Bshouty,et al.  Size-depth tradeoffs for algebraic formulae , 1991, [1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science.

[144]  Lance Fortnow,et al.  Are There Interactive Protocols for CO-NP Languages? , 1988, Inf. Process. Lett..

[145]  Dieter van Melkebeek,et al.  Graph nonisomorphism has subexponential size proofs unless the polynomial-time hierarchy collapses , 1999, STOC '99.

[146]  E. Knill,et al.  Resilient Quantum Computation , 1998 .

[147]  Scott Aaronson,et al.  Quantum lower bound for recursive fourier sampling , 2002, Quantum Inf. Comput..

[148]  Steven Weinberg,et al.  Dreams of a Final Theory , 1993 .

[149]  John Gill,et al.  Relativizations of the P =? NP Question , 1975, SIAM J. Comput..

[150]  Dieks Modal interpretation of quantum mechanics, measurements, and macroscopic behavior. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[151]  E. Wigner The Unreasonable Effectiveness of Mathematics in the Natural Sciences (reprint) , 1960 .

[152]  Charles H. Bennett,et al.  Logical reversibility of computation , 1973 .

[153]  Amnon Ta-Shma,et al.  Adiabatic quantum state generation and statistical zero knowledge , 2003, STOC '03.

[154]  Andris Ambainis,et al.  Quantum lower bounds for collision and element distinctness with small range , 2003 .

[155]  Karl Zeller,et al.  Schwankung von Polynomen zwischen Gitterpunkten , 1964 .

[156]  R. de Wolf,et al.  Characterization of non-deterministic quantum query and quantum communication complexity , 2000, Proceedings 15th Annual IEEE Conference on Computational Complexity.

[157]  R. Jozsa,et al.  SEPARABILITY OF VERY NOISY MIXED STATES AND IMPLICATIONS FOR NMR QUANTUM COMPUTING , 1998, quant-ph/9811018.

[158]  Andris Ambainis,et al.  The Quantum Communication Complexity of Sampling , 2003, SIAM J. Comput..

[159]  Gary L. Miller,et al.  Riemann's Hypothesis and tests for primality , 1975, STOC.

[160]  E. Knill,et al.  Implementation of the Five Qubit Error Correction Benchmark , 2001, quant-ph/0101034.

[161]  Frédéric Magniez,et al.  Quantum Algorithms for Element Distinctness , 2005, SIAM J. Comput..

[162]  Olimpia Lombardi,et al.  Modal Interpretations of Quantum Mechanics , 2002 .

[163]  A. Steane Multiple-particle interference and quantum error correction , 1996, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[164]  R. Feynman The Character of Physical Law , 1965 .

[165]  H. Buhrman,et al.  Complexity measures and decision tree complexity: a survey , 2002, Theor. Comput. Sci..

[166]  N. David Mermin From Cbits to Qbits: Teaching computer scientists quantum mechanics , 2003 .

[167]  Noam Nisan,et al.  On the degree of boolean functions as real polynomials , 1992, STOC '92.

[168]  Ingo Wegener,et al.  Properties of Complexity Measures for Prams and Wrams , 1986, Theor. Comput. Sci..

[169]  I. Chuang,et al.  Experimental realization of Shor's quantum factoring algorithm using nuclear magnetic resonance , 2001, Nature.

[170]  Mihalis Yannakakis,et al.  How easy is local search? , 1985, 26th Annual Symposium on Foundations of Computer Science (sfcs 1985).

[171]  K. Birgitta Whaley,et al.  Quantum random-walk search algorithm , 2002, quant-ph/0210064.

[172]  Seinosuke Toda,et al.  PP is as Hard as the Polynomial-Time Hierarchy , 1991, SIAM J. Comput..

[173]  Norbert Sauer,et al.  On the Density of Families of Sets , 1972, J. Comb. Theory A.

[174]  J. Bell,et al.  Speakable and Unspeakable in Quatum Mechanics , 1988 .

[175]  R. Bousso The Holographic principle , 2002, hep-th/0203101.

[176]  D. Bacon Quantum computational complexity in the presence of closed timelike curves , 2003, quant-ph/0309189.

[177]  Andrew Chi-Chih Yao,et al.  Quantum Circuit Complexity , 1993, FOCS.

[178]  Leonard M. Adleman,et al.  Quantum Computability , 1997, SIAM J. Comput..

[179]  Gottesman Class of quantum error-correcting codes saturating the quantum Hamming bound. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[180]  A. Hoffman,et al.  The variation of the spectrum of a normal matrix , 1953 .

[181]  S. Aaronson Is Quantum Mechanics An Island in Theoryspace , 2004, quant-ph/0401062.

[182]  Basil J. Hiley,et al.  Quantum interference and the quantum potential , 1979 .

[183]  R. Solovay,et al.  Relativizations of the $\mathcal{P} = ?\mathcal{NP}$ Question , 1975 .

[184]  A. Beurling,et al.  An Automorphism of Product Measures , 1960 .

[185]  R. Cleve,et al.  Quantum algorithms revisited , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[186]  John Watrous,et al.  On one-dimensional quantum cellular automata , 1995, Proceedings of IEEE 36th Annual Foundations of Computer Science.

[187]  Clemens Lautemann,et al.  BPP and the Polynomial Hierarchy , 1983, Inf. Process. Lett..

[188]  Lane A. Hemaspaandra,et al.  Threshold Computation and Cryptographic Security , 1993, ISAAC.

[189]  Miklos Santha On the Monte Carlo Boolean Decision Tree Complexity of Read-Once Formulae , 1995, Random Struct. Algorithms.

[190]  Ziv Bar-Yossef,et al.  Exponential separation of quantum and classical one-way communication complexity , 2004, STOC '04.

[191]  Andris Ambainis,et al.  Quantum walk algorithm for element distinctness , 2003, 45th Annual IEEE Symposium on Foundations of Computer Science.

[192]  D. Abrams,et al.  NONLINEAR QUANTUM MECHANICS IMPLIES POLYNOMIAL-TIME SOLUTION FOR NP-COMPLETE AND P PROBLEMS , 1998, quant-ph/9801041.

[193]  Richard J. Lipton,et al.  Algorithms for Black-Box Fields and their Application to Cryptography (Extended Abstract) , 1996, CRYPTO.

[194]  Christoph Dürr,et al.  A Quantum Algorithm for Finding the Minimum , 1996, ArXiv.

[195]  A. Zeilinger,et al.  Speakable and Unspeakable in Quantum Mechanics , 1989 .

[196]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[197]  W Dür,et al.  Stability of macroscopic entanglement under decoherence. , 2004, Physical review letters.

[198]  Ronald de Wolf,et al.  Quantum lower bounds by polynomials , 2001, JACM.

[199]  S. Aaronson Quantum computing and hidden variables , 2004, quant-ph/0408035.

[200]  Gilles Brassard,et al.  Strengths and Weaknesses of Quantum Computing , 1997, SIAM J. Comput..

[201]  Andrew Chi-Chih Yao,et al.  On the power of quantum fingerprinting , 2003, STOC '03.

[202]  Richard Beigel Perceptrons, PP, and the polynomial hierarchy , 2005, computational complexity.

[203]  Ran Raz,et al.  Multi-linear formulas for permanent and determinant are of super-polynomial size , 2004, STOC '04.

[204]  Andris Ambainis,et al.  Quantum walks on graphs , 2000, STOC '01.

[205]  Carsten Lund,et al.  Algebraic methods for interactive proof systems , 1990, Proceedings [1990] 31st Annual Symposium on Foundations of Computer Science.

[206]  Scott Aaronson,et al.  Quantum lower bound for the collision problem , 2001, STOC '02.

[207]  A. Kitaev Quantum computations: algorithms and error correction , 1997 .

[208]  S. Lloyd Computational capacity of the universe. , 2001, Physical review letters.

[209]  D. Gottesman The Heisenberg Representation of Quantum Computers , 1998, quant-ph/9807006.

[210]  Noam Nisan,et al.  Constant depth circuits, Fourier transform, and learnability , 1989, 30th Annual Symposium on Foundations of Computer Science.

[211]  V. Strassen Gaussian elimination is not optimal , 1969 .

[212]  Ivan Damgård,et al.  Collision Free Hash Functions and Public Key Signature Schemes , 1987, EUROCRYPT.

[213]  Gatis Midrijanis A Polynomial Quantum Query Lower Bound for the Set Equality Problem , 2004, ICALP.

[214]  Carlo Rovelli,et al.  Discreteness of area and volume in quantum gravity [Nucl. Phys. B 442 (1995) 593] , 1994, gr-qc/9411005.

[215]  Wladimir Markoff,et al.  Über Polynome, die in einem gegebenen Intervalle möglichst wenig von Null abweichen , 1916 .

[216]  Harumichi Nishimura,et al.  Polynomial time quantum computation with advice , 2003, Inf. Process. Lett..

[217]  R Laflamme,et al.  Benchmarking quantum computers: the five-qubit error correcting code. , 2001, Physical review letters.

[218]  B. Hiley The Undivided Universe , 1993 .

[219]  Thomas Jansen,et al.  UNIVERSITY OF DORTMUND REIHE COMPUTATIONAL INTELLIGENCE COLLABORATIVE RESEARCH CENTER 531 Design and Management of Complex Technical Processes and Systems by means of Computational Intelligence Methods Upper and Lower Bounds for Randomized Search Heuristics in Black-Box Optimization , 2004 .