Dynamical p-adaptivity for LES of compressible flows in a high order DG framework

We investigate the possibility of reducing the computational burden of LES models by employing locally and dynamically adaptive polynomial degrees in the framework of a high order DG method. A degree adaptation technique especially featured to be effective for LES applications, that was previously developed by the authors and tested in the statically adaptive case, is applied here in a dynamically adaptive fashion. Two significant benchmarks are considered, comparing the results of adaptive and non adaptive simulations. The proposed dynamically adaptive approach allows for a significant reduction of the computational cost of representative LES computation, while allowing to maintain the level of accuracy guaranteed by LES carried out with constant, maximum polynomial degree values.

[1]  Arthur Veldman,et al.  Spectro-Consistent Discretization of Navier-Stokes: a Challenge to RANS and LES , 1998 .

[2]  Sabine Fenstermacher,et al.  Numerical Approximation Of Partial Differential Equations , 2016 .

[3]  Sylvain Laizet,et al.  Numerical dissipation vs. subgrid-scale modelling for large eddy simulation , 2017, J. Comput. Phys..

[4]  Antonio Huerta,et al.  Hybridizable Discontinuous Galerkin with degree adaptivity for the incompressible Navier-Stokes equations ✩ , 2014 .

[5]  Pierre Sagaut,et al.  A dynamic p-adaptive Discontinuous Galerkin method for viscous flow with shocks , 2005 .

[6]  Frédéric Coquel,et al.  A comparison of refinement indicators for p-adaptive simulations of steady and unsteady flows using discontinuous Galerkin methods , 2019, J. Comput. Phys..

[7]  Bernardus J. Geurts,et al.  A multi-scale formulation for compressible turbulent flows suitable for general variational discretization techniques , 2007 .

[8]  C. Norberg Flow around rectangular cylinders: Pressure forces and wake frequencies , 1993 .

[9]  B. Geurts,et al.  Discretization error dominance over subgrid terms in large eddy simulation of compressible shear layers in 2D , 1994 .

[10]  Leszek F. Demkowicz,et al.  A Fully Automatic hp-Adaptivity , 2002, J. Sci. Comput..

[11]  A. Abbà,et al.  Polynomial Adaptivity in LES: Application to Compressibility Effects Investigation on Bluff Bodies , 2019, Direct and Large-Eddy Simulation XI.

[12]  Esteban Ferrer,et al.  Truncation Error Estimation in the p-Anisotropic Discontinuous Galerkin Spectral Element Method , 2018, Journal of Scientific Computing.

[13]  P. Sagaut,et al.  On the Use of Shock-Capturing Schemes for Large-Eddy Simulation , 1999 .

[14]  Antonella Abbà,et al.  A locally p-adaptive approach for Large Eddy Simulation of compressible flows in a DG framework , 2016, J. Comput. Phys..

[15]  Karen Dragon Devine,et al.  Parallel adaptive hp -refinement techniques for conservation laws , 1996 .

[16]  E. Süli,et al.  A note on the design of hp-adaptive finite element methods for elliptic partial differential equations , 2005 .

[17]  Antonella Abbà,et al.  Dynamical Degree Adaptivity for DG-LES Models , 2020 .

[18]  S. Scott Collis,et al.  Discontinuous Galerkin Methods for Turbulence Simulation , 2002 .

[19]  Gregor Gassner,et al.  An Entropy Stable h / p Non-Conforming Discontinuous Galerkin Method with the Summation-by-Parts Property , 2017, J. Sci. Comput..

[20]  Peter R. Voke,et al.  Flow Past a Square Cylinder: Test Case LES2 , 1997 .

[21]  Steven J. Ruuth,et al.  A New Class of Optimal High-Order Strong-Stability-Preserving Time Discretization Methods , 2002, SIAM J. Numer. Anal..

[22]  Thomas M. Eidson,et al.  Numerical simulation of the turbulent Rayleigh–Bénard problem using subgrid modelling , 1985, Journal of Fluid Mechanics.

[23]  Spencer J. Sherwin,et al.  A p-adaptation method for compressible flow problems using a goal-based error indicator , 2017 .

[24]  L. Valdettaro,et al.  Analysis of subgrid scale models , 2003 .

[25]  C. Meneveau,et al.  Intermittency and relative scaling of subgrid-scale energy dissipation in isotropic turbulence , 1998 .

[26]  Fabio Naddei Simulation adaptative des grandes échelles d'écoulements turbulents fondée sur une méthode Galerkine discontinue. (Adaptive Large Eddy Simulations based on discontinuous Galerkin methods) , 2019 .

[27]  P. Moin,et al.  A dynamic subgrid‐scale eddy viscosity model , 1990 .

[28]  Michel Visonneau,et al.  Combined refinement criteria for anisotropic grid refinement in free-surface flow simulation , 2014 .

[29]  Frédéric Coquel,et al.  An Adaptive Variational Multiscale Discontinuous Galerkin Method For Large Eddy Simulation , 2016 .

[30]  Leszek Demkowicz,et al.  An h–p Taylor—Galerkin finite method for compressible Euler equations , 1991 .

[31]  Gonzalo Rubio,et al.  Comparisons of p-adaptation strategies based on truncation- and discretisation-errors for high order discontinuous Galerkin methods , 2016 .

[32]  Marta de la Llave Plata,et al.  On the performance of a high-order multiscale DG approach to LES at increasing Reynolds number , 2019, Computers & Fluids.

[33]  Jean-François Remacle,et al.  An Adaptive Discontinuous Galerkin Technique with an Orthogonal Basis Applied to Compressible Flow Problems , 2003, SIAM Rev..

[34]  Luc Vervisch,et al.  Large Eddy Simulation of compressible turbulent flows , 1999 .

[35]  Claus-Dieter Munz,et al.  On the Influence of Polynomial De-aliasing on Subgrid Scale Models , 2016 .

[36]  Giovanni Tumolo,et al.  A semi-implicit, semi-Lagrangian, p-adaptive discontinuous Galerkin method for the shallow water equations , 2013, J. Comput. Phys..

[37]  E. D. Obasaju,et al.  An experimental study of pressure fluctuations on fixed and oscillating square-section cylinders , 1982, Journal of Fluid Mechanics.

[38]  Chi-Wang Shu,et al.  The Runge-Kutta Discontinuous Galerkin Method for Conservation Laws V , 1998 .

[39]  R. LeVeque Finite Volume Methods for Hyperbolic Problems: Characteristics and Riemann Problems for Linear Hyperbolic Equations , 2002 .

[40]  S. Scott Collis,et al.  The DG/VMS Method for Unified Turbulence Simulation , 2002 .

[41]  L. Margolin,et al.  Implicit Large Eddy Simulation: Computing Turbulent Fluid Dynamics , 2011 .

[42]  Doyle Knight,et al.  Compressible large eddy simulation using unstructured grids , 1998 .

[43]  Niclas Jansson,et al.  Unicorn Parallel adaptive finite element simulation of turbulent flow and fluid-structure interaction for deforming domains and complex geometry , 2013 .

[44]  Spencer J. Sherwin,et al.  Spatial eigensolution analysis of energy-stable flux reconstruction schemes and influence of the numerical flux on accuracy and robustness , 2018, J. Comput. Phys..

[45]  Parviz Moin,et al.  The free compressible viscous vortex , 1991, Journal of Fluid Mechanics.

[46]  P. Moin,et al.  On the Effect of Numerical Errors in Large Eddy Simulations of Turbulent Flows , 1997 .

[47]  Luc Vervisch,et al.  Three-dimensional boundary conditions for direct and large-eddy simulation of compressible viscous flows , 2008, J. Comput. Phys..

[48]  Claes Eskilsson,et al.  An hp‐adaptive discontinuous Galerkin method for shallow water flows , 2011 .

[49]  Véronique Fortuné,et al.  Noise radiated by a non-isothermal, temporal mixing layer , 2005 .

[50]  W. Rodi Comparison of LES and RANS calculations of the flow around bluff bodies , 1997 .

[51]  Oriol Lehmkuhl,et al.  Parallel Adaptive Mesh Refinement Simulation of the Flow Around a Square Cylinder at Re = 22000☆ , 2013 .

[52]  M. Germano,et al.  General formalism for a reduced description and modelling of momentum and energy transfer in turbulence , 2019, Journal of Fluid Mechanics.

[53]  Spencer J. Sherwin,et al.  Spatial eigensolution analysis of discontinuous Galerkin schemes with practical insights for under-resolved computations and implicit LES , 2017, Computers & Fluids.

[54]  Ugo Piomelli,et al.  Recent progress on reliability assessment of large-eddy simulation , 2019, Journal of Fluids and Structures.

[55]  L. G. Margolin,et al.  The reality of artificial viscosity , 2019 .

[56]  Shmuel Einav,et al.  A laser-Doppler velocimetry study of ensemble-averaged characteristics of the turbulent near wake of a square cylinder , 1995, Journal of Fluid Mechanics.

[57]  Neil D. Sandham,et al.  Three-dimensional simulations of large eddies in the compressible mixing layer , 1991, Journal of Fluid Mechanics.

[58]  Sorin Mitran A Comparison of Adaptive Mesh Refinement Approaches for Large Eddy Simulation , 2001 .

[59]  Bernardus J. Geurts,et al.  A priori tests of large eddy simulation of the compressible plane mixing layer , 1995 .

[60]  S. Pope Ten questions concerning the large-eddy simulation of turbulent flows , 2004 .

[61]  A. Abbà,et al.  Filter size definition in anisotropic subgrid models for large eddy simulation on irregular grids , 2017 .

[62]  A. Gorobets,et al.  Turbulent flow around a square cylinder at Reynolds number 22,000: A DNS study , 2015 .

[63]  Gregor Gassner,et al.  On the use of kinetic energy preserving DG-schemes for large eddy simulation , 2017, J. Comput. Phys..

[64]  Johan Hoffman,et al.  Computation of Mean Drag for Bluff Body Problems Using Adaptive DNS/LES , 2005, SIAM J. Sci. Comput..

[65]  Luca Bonaventura,et al.  Dynamic models for Large Eddy Simulation of compressible flows with a high order DG method , 2014, Computers & Fluids.

[66]  F. Bassi,et al.  An entropy-adjoint p -adaptive discontinuous Galerkin method for the under-resolved simulation of turbulent flows , 2019, AIAA Aviation 2019 Forum.

[67]  L. Davidson,et al.  Large Eddy Simulation of Flow Past a Square Cylinder: Comparison of Different Subgrid Scale Models , 2000 .

[68]  N. C. Markatos,et al.  Recent advances on the numerical modelling of turbulent flows , 2015 .

[69]  Giovanni Tumolo,et al.  A semi‐implicit, semi‐Lagrangian discontinuous Galerkin framework for adaptive numerical weather prediction , 2015 .

[70]  P. Sagaut BOOK REVIEW: Large Eddy Simulation for Incompressible Flows. An Introduction , 2001 .

[71]  Gilou Agbaglah,et al.  A parallel hp-adaptive high order discontinuous Galerkin method for the incompressible Navier-Stokes equations , 2019, J. Comput. Phys. X.

[72]  Yves Gervais,et al.  Noise radiated by a non-isothermal, temporal mixing layer. Part I: Direct computation and prediction using compressible DNS , 2004 .

[73]  Johan Hoffman,et al.  Stability of the dual Navier-Stokes equations and efficient computation of mean output in turbulent flow using adaptive DNS/LES , 2006 .

[74]  Holger Foysi,et al.  The compressible mixing layer: an LES study , 2010 .

[75]  S. Ghosal An Analysis of Numerical Errors in Large-Eddy Simulations of Turbulence , 1996 .

[76]  Gregor Gassner,et al.  Entropy Stable Space–Time Discontinuous Galerkin Schemes with Summation-by-Parts Property for Hyperbolic Conservation Laws , 2018, J. Sci. Comput..

[77]  David Moxey,et al.  Towards p-Adaptive Spectral/hp Element Methods for Modelling Industrial Flows , 2017 .

[78]  C. K. Chan,et al.  Large eddy simulation of mixing layer , 2004 .

[79]  Matthias K. Gobbert,et al.  A dynamically load-balanced parallel p-adaptive implicit high-order flux reconstruction method for under-resolved turbulence simulation , 2019, J. Comput. Phys..

[80]  G. Tumolo A mass conservative TR-BDF2 semi-implicit semi-Lagrangian DG discretization of the shallow water equations on general structured meshes of quadrilaterals , 2016 .

[81]  Spencer J. Sherwin,et al.  Dealiasing techniques for high-order spectral element methods on regular and irregular grids , 2015, J. Comput. Phys..

[82]  Joseph E. Flaherty,et al.  Integrated space-time adaptive hp -refinement methods for parabolic systems , 1995 .