The jumping dielectric breakdown behavior induced by crack propagation in ferroelectric materials: A Phase field study

[1]  Chang Liu,et al.  Phase field modeling of coupling evolution of fracture and dielectric breakdown in ferroelectric materials , 2022, International Journal of Mechanical Sciences.

[2]  Xueyao Wang,et al.  Electrical boundary condition at the crack surface in ferroelectrics , 2022, Journal of The American Ceramic Society.

[3]  Enling Tang,et al.  Dynamic fracture behavior of piezoelectric ceramics under impact: force-electric response and electrical breakdown , 2021 .

[4]  Jie Wang,et al.  Phase field modeling of dielectric breakdown of ferroelectric polymers subjected to mechanical and electrical loadings , 2021 .

[5]  Julien Yvonnet,et al.  Implementation of a new strain split to model unilateral contact within the phase field method , 2020, International Journal for Numerical Methods in Engineering.

[6]  N. P. Dijk,et al.  Strain energy density decompositions in phase-field fracture theories for orthotropy and anisotropy , 2020 .

[7]  Vinh Phu Nguyen,et al.  Phase-field modeling of fracture , 2019 .

[8]  Longtu Li,et al.  Phase-field modeling of the coupled domain structure and dielectric breakdown evolution in a ferroelectric single crystal. , 2019, Physical chemistry chemical physics : PCCP.

[9]  Yang Shen,et al.  Phase-field modeling and machine learning of electric-thermal-mechanical breakdown of polymer-based dielectrics , 2019, Nature Communications.

[10]  W. Hong,et al.  Electrical treeing: A phase-field model , 2019, Extreme Mechanics Letters.

[11]  Yaxin Zhu,et al.  Simulation on crack propagation vs. crack-tip dislocation emission by XFEM-based DDD scheme , 2019, International Journal of Plasticity.

[12]  Yang Shen,et al.  Phase‐Field Model of Electrothermal Breakdown in Flexible High‐Temperature Nanocomposites under Extreme Conditions , 2018 .

[13]  G. Farrahi,et al.  On the phase field modeling of crack growth and analytical treatment on the parameters , 2018, Continuum Mechanics and Thermodynamics.

[14]  Genshui Wang,et al.  Mechanical induced electrical failure of shock compressed PZT95/5 ferroelectric ceramics , 2017 .

[15]  Sanat K. Kumar,et al.  Fracture: Genesis of Dielectric Breakdown , 2017 .

[16]  R. Müller,et al.  A discussion of fracture mechanisms in heterogeneous materials by means of configurational forces in a phase field fracture model , 2016 .

[17]  Gerold A. Schneider,et al.  Size-dependence of the dielectric breakdown strength from nano- to millimeter scale , 2014 .

[18]  W. Hong,et al.  Phase-field model for dielectric breakdown in solids , 2014 .

[19]  A. Abdollahi,et al.  Conducting crack propagation driven by electric fields in ferroelectric ceramics , 2013 .

[20]  Michael J. Borden,et al.  A phase-field model for fracture in piezoelectric ceramics , 2013, International Journal of Fracture.

[21]  Irene Arias,et al.  Phase-field modeling of crack propagation in piezoelectric and ferroelectric materials with different electromechanical crack conditions , 2012 .

[22]  A. Abdollahi,et al.  Numerical simulation of intergranular and transgranular crack propagation in ferroelectric polycrystals , 2012, International Journal of Fracture.

[23]  Irene Arias,et al.  Phase-field modeling of the coupled microstructure and fracture evolution in ferroelectric single crystals , 2011 .

[24]  Ralf Müller,et al.  A continuum phase field model for fracture , 2010 .

[25]  Christian Miehe,et al.  A phase field model of electromechanical fracture , 2010 .

[26]  Christian Miehe,et al.  Thermodynamically consistent phase‐field models of fracture: Variational principles and multi‐field FE implementations , 2010 .

[27]  D. Gross,et al.  Fracture simulation of ferroelectrics based on the phase field continuum and a damage variable , 2010 .

[28]  M. Kuna Fracture mechanics of piezoelectric materials – Where are we right now? , 2010 .

[29]  B. Bourdin,et al.  The Variational Approach to Fracture , 2008 .

[30]  C. Sun,et al.  Interactions between domain switching and crack propagation in poled BaTiO3 single crystal under mechanical loading , 2007 .

[31]  G. Schneider Influence of Electric Field and Mechanical Stresses on the Fracture of Ferroelectrics , 2007 .

[32]  Chad M. Landis,et al.  Continuum thermodynamics of ferroelectric domain evolution: Theory, finite element implementation, and application to domain wall pinning , 2007 .

[33]  Benjamin S. Kirk,et al.  Library for Parallel Adaptive Mesh Refinement / Coarsening Simulations , 2006 .

[34]  Li-Mo Wang,et al.  Relationship between Intrinsic Breakdown Field and Bandgap of Materials , 2006, 2006 25th International Conference on Microelectronics.

[35]  Long-Qing Chen,et al.  Three‐Dimensional Computer Simulation of Ferroelectric Domain Formation , 2005 .

[36]  Kaushik Bhattacharya,et al.  A computational model of ferroelectric domains. Part I: model formulation and domain switching , 2005 .

[37]  K. Bamzai,et al.  Indentation induced testing studies on lanthanum modified lead titanate ceramics , 2004 .

[38]  Tong-Yi Zhang,et al.  Failure behavior and failure criterion of conductive cracks (deep notches) in piezoelectric ceramics II: experimental verification , 2004 .

[39]  Tong-Yi Zhang,et al.  Phase-field simulations of ferroelectric/ferroelastic polarization switching , 2004 .

[40]  J. McPherson,et al.  Trends in the ultimate breakdown strength of high dielectric-constant materials , 2003 .

[41]  Long-Qing Chen Phase-Field Models for Microstructure Evolution , 2002 .

[42]  R. Mueller,et al.  On material forces and finite element discretizations , 2002 .

[43]  Dietmar Gross,et al.  On configurational forces in the context of the finite element method , 2002 .

[44]  Tong-Yi Zhang,et al.  Electrical fracture toughness for electrically conductive deep notches driven by electric fields in depoled lead zirconate titanate ceramics , 2001 .

[45]  B. Bourdin,et al.  Numerical experiments in revisited brittle fracture , 2000 .

[46]  C. Qian,et al.  Electrical fracture toughness for conductive cracks driven by electric fields in piezoelectric materials , 2000 .

[47]  G. Schneider,et al.  Influence of the electric field on vickers indentation crack growth in BaTiO3 , 1999 .

[48]  Gilles A. Francfort,et al.  Revisiting brittle fracture as an energy minimization problem , 1998 .

[49]  A. Tagantsev,et al.  Effect of mechanical boundary conditions on phase diagrams of epitaxial ferroelectric thin films , 1998 .

[50]  Huajian Gao,et al.  Local and global energy release rates for an electrically yielded crack in a piezoelectric ceramic , 1997 .

[51]  M. Gurtin Generalized Ginzburg-Landau and Cahn-Hilliard equations based on a microforce balance , 1996 .

[52]  Seungbae Park,et al.  Determination of fracture toughness of piezoceramics under the influence of electric field using Vickers indentation , 1995, Smart Structures.

[53]  Zhigang Suo,et al.  Electric field induced cracking in ferroelectric ceramics , 1995 .

[54]  Zhigang Suo,et al.  Cracking in ceramic actuators caused by electrostriction , 1994 .

[55]  A. G. Tobin,et al.  Effect of electric fields on fracture behavior of PZT ceramics , 1993, Smart Structures.

[56]  Garboczi Linear dielectric-breakdown electrostatics. , 1988, Physical review. B, Condensed matter.

[57]  Leslie E. Cross,et al.  Thermodynamic theory of PbTiO3 , 1987 .

[58]  J. Eischen An improved method for computing the J2 integral , 1987 .

[59]  H. Zeller,et al.  Electrofracture mechanics of dielectric aging , 1984 .

[60]  H. H. Clarence Zener,et al.  A theory of the electrical breakdown of solid dielectrics , 1934 .