Control and navigation in manoeuvres of formations of unmanned mobile vehicles

Abstract This paper proposes a method for controlling formations of autonomous nonholonomic vehicles in order to reach a desired target region. The approach is based on utilization of pairs of virtual leaders whose control inputs are obtained in a single optimization process using model predictive control (MPC) methodology. The obtained solution of the optimization includes both a complete plan for the formation including the overall structure of robots' workspace and control inputs for each vehicle. This ensures collision-free trajectories between the robots as well as dynamic obstacles. The proposed method enables to autonomously design arbitrary manoeuvres, like reverse driving or rotations of compact formations of car-like robots. Such a complicated behavior is illustrated by simulations and by experiments. Furthermore, the requirements that guarantee convergence of the group to the target region are formulated.

[1]  Camillo J. Taylor,et al.  A vision-based formation control framework , 2002, IEEE Trans. Robotics Autom..

[2]  Libor Preucil,et al.  Navigation and Formation Control Employing Complementary Virtual Leaders for Complex Maneuvers , 2010, ICINCO.

[3]  Klaus Schilling,et al.  Application of coordinated multi-vehicle formations for snow shoveling on airports , 2009, Intell. Serv. Robotics.

[4]  Libor Preucil,et al.  A Simple Visual Navigation System with Convergence Property , 2008, EUROS.

[5]  Maarouf Saad,et al.  Formation path following control of unicycle-type mobile robots , 2008, 2008 IEEE International Conference on Robotics and Automation.

[6]  Haibin Duan,et al.  Receding horizon control for multi-UAVs close formation control based on differential evolution , 2010, Science China Information Sciences.

[7]  Frank Allgöwer,et al.  State and Output Feedback Nonlinear Model Predictive Control: An Overview , 2003, Eur. J. Control.

[8]  Jian Chen,et al.  Leader-Follower Formation Control of Multiple Non-holonomic Mobile Robots Incorporating a Receding-horizon Scheme , 2010, Int. J. Robotics Res..

[9]  Michael Defoort Distributed receding horizon planning for multi-robot systems , 2010, 2010 IEEE International Conference on Control Applications.

[10]  David Q. Mayne,et al.  Constrained model predictive control: Stability and optimality , 2000, Autom..

[11]  Wei Ren Decentralization of Virtual Structures in Formation Control of Multiple Vehicle Systems via Consensus Strategies , 2008, Eur. J. Control.

[12]  Martial Hebert,et al.  A behavior-based system for off-road navigation , 1994, IEEE Trans. Robotics Autom..

[13]  Klaus Schilling,et al.  Efficient airport snow shoveling by applying autonomous multi-vehicle formations , 2008, 2008 IEEE International Conference on Robotics and Automation.

[14]  Randal W. Beard,et al.  A coordination architecture for spacecraft formation control , 2001, IEEE Trans. Control. Syst. Technol..

[15]  Lenka Lhotská,et al.  Simplified Social Impact Theory Based Optimizer in Feature Subset Selection , 2011, NICSO.

[16]  Eduardo F. Camacho,et al.  Constrained Model Predictive Control , 2007 .

[17]  R. Beard,et al.  VIRTUAL STRUCTURE BASED SPACECRAFT FORMATION CONTROL WITH FORMATION FEEDBACK , 2002 .

[18]  Zhou Chao,et al.  UAV Formation Flight Based on Nonlinear Model Predictive Control , 2012 .

[19]  Manfred Morari,et al.  Hybrid Parameter-varying Model Predictive Control for Autonomous Vehicle Steering , 2008, Eur. J. Control.

[20]  S. Kahne,et al.  Optimal control: An introduction to the theory and ITs applications , 1967, IEEE Transactions on Automatic Control.

[21]  Long Wang,et al.  Finite-time formation control for multi-agent systems , 2009, Autom..

[22]  H. Jin Kim,et al.  Nonlinear Model Predictive Formation Flight , 2009, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans.

[23]  Klaus Schilling,et al.  Control and navigation of formations of car-like robots on a receding horizon , 2009, 2009 IEEE Control Applications, (CCA) & Intelligent Control, (ISIC).

[24]  Vijay Kumar,et al.  Hybrid control of formations of robots , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[25]  Christopher M. Clark,et al.  Motion planning for formations of mobile robots , 2004, Robotics Auton. Syst..

[26]  William B. Dunbar,et al.  Distributed receding horizon control for multi-vehicle formation stabilization , 2006, Autom..

[27]  Vijay Kumar,et al.  Modeling and control of formations of nonholonomic mobile robots , 2001, IEEE Trans. Robotics Autom..

[28]  Randal W. Beard,et al.  A decentralized approach to formation maneuvers , 2003, IEEE Trans. Robotics Autom..

[29]  Rafael Castro-Linares,et al.  Trajectory tracking for non-holonomic cars: A linear approach to controlled leader-follower formation , 2010, 49th IEEE Conference on Decision and Control (CDC).

[30]  Yang Liu,et al.  An iterative learning approach to formation control of multi-agent systems , 2012, Syst. Control. Lett..

[31]  Mark W. Spong,et al.  Cooperative Avoidance Control for Multiagent Systems , 2007 .

[32]  Libor Preucil,et al.  Roads sweeping by unmanned multi-vehicle formations , 2011, 2011 IEEE International Conference on Robotics and Automation.

[33]  Philippe Martinet,et al.  Adaptive and Predictive Path Tracking Control for Off-road Mobile Robots , 2007, Eur. J. Control.

[34]  Xun-Lin Zhu,et al.  Consensus of Second-Order Delayed Multi-Agent Systems with Leader-Following , 2010, Eur. J. Control.

[35]  Klaus Schilling,et al.  Voronoi strains - a spline path planning algorithm for complex environments , 2007, Artificial Intelligence and Applications.

[36]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[37]  Abdelkader Abdessameud,et al.  Formation control of VTOL Unmanned Aerial Vehicles with communication delays , 2011, Autom..

[38]  S. Joe Qin,et al.  A survey of industrial model predictive control technology , 2003 .

[39]  Lenka Lhotská,et al.  Social Impact Theory Based Optimizer , 2007, ECAL.

[40]  Marios M. Polycarpou,et al.  Cooperative Constrained Control of Distributed Agents With Nonlinear Dynamics and Delayed Information Exchange: A Stabilizing Receding-Horizon Approach , 2008, IEEE Transactions on Automatic Control.

[41]  Libor Preucil,et al.  Control of ad-hoc formations for autonomous airport snow shoveling , 2010, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[42]  Maja J. Mataric,et al.  A general algorithm for robot formations using local sensing and minimal communication , 2002, IEEE Trans. Robotics Autom..

[43]  Mazen Alamir,et al.  Stabilization of nonlinear systems using receding-horizon control schemes , 2013 .