A quantitative assessment of chemical techniques for detecting traces of explosives at counter-terrorist portals.

Previous reviews have discussed in a qualitative manner the various highly sensitive analytical techniques for detecting minute traces of explosive material. However, there is no review available which compares quantitatively the sensitivities of the different analytical methods for detecting explosives. In view of the importance of this area to the present day planning of counter-terrorist strategies, this review makes a comprehensive and quantitative comparison of the analytical chemical methods which can be used for the detection of trace explosives in the luggage and on the persons of travelers. Possible directions of future development in this area are also discussed.

[1]  A. I. Nadezhdinskii,et al.  High sensitivity methane analyzer based on tuned near infrared diode laser , 1999 .

[2]  T. N. Rudakov,et al.  The use of multi-pulse nuclear quadrupole resonance techniques for the detection of explosives containing RDX , 1997 .

[3]  G. Eiceman,et al.  Quantitative calibration of vapor levels of TNT, RDX, and PETN using a diffusion generator with gravimetry and ion mobility spectrometry. , 1997, Talanta.

[4]  T. Khayamian,et al.  Analysis of 2,4,6-trinitrotoluene, pentaerythritol tetranitrate and cyclo-1,3,5-trimethylene-2,4,6-trinitramine using negative corona discharge ion mobility spectrometry. , 2003, Talanta.

[5]  I. Buryakov,et al.  Detection of Explosive Vapors in the Air Using an Ion Drift Nonlinearity Spectrometer , 2001 .

[6]  Robert W. Field,et al.  INFRARED ABSORPTION OF EXPLOSIVE MOLECULE VAPORS , 1997 .

[7]  A. F. Krupnov,et al.  Precision broadband Spectroscopy in the Terahertz Region , 1994 .

[8]  J. Yinon,et al.  Peer Reviewed: Detection of Explosives by Electronic Noses , 2003 .

[9]  C. Chung,et al.  FEASIBILITY STUDY OF EXPLOSIVE DETECTION FOR AIRPORT SECURITY USING A NEUTRON SOURCE , 1993 .

[10]  A. Kusterbeck,et al.  Trace level detection of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by microimmunosensor. , 1999, Biosensors & bioelectronics.

[11]  J. Yinon Analysis of Explosives by Negative Ion Chemical Ionization Mass Spectrometry , 1980 .

[12]  Michel Orrit,et al.  Ten Years of Single-Molecule Spectroscopy. , 2000, The journal of physical chemistry. A.

[13]  Peter V. Czipott,et al.  Man portable mine detector using nuclear quadrupole resonance-first year progress and test results , 1998 .

[14]  Myung-Hoon Kim,et al.  Square-wave cathodic stripping voltammetric analysis of RDX using mercury-film plated glassy carbon electrode. , 2002, Talanta.

[15]  C. Seher,et al.  Nuclear-based techniques for explosive detection , 1986 .

[16]  F S Ligler,et al.  Trace detection of explosives using a membrane-based displacement immunoassay. , 2000, Journal of immunological methods.

[17]  J. Goodpaster,et al.  Fluorescence quenching as an indirect detection method for nitrated explosives. , 2001, Analytical chemistry.

[18]  Carla J. Miller,et al.  Detection of volatile vapors emitted from explosives with a handheld ion mobility spectrometer , 2001 .

[19]  M. Maeda,et al.  Trace element analysis by laser ablation atomic fluorescence spectroscopy , 1994 .

[20]  A W Kusterbeck,et al.  Explosives detection in soil using a field-portable continuous flow immunosensor. , 2001, Journal of hazardous materials.

[21]  G C Bhar,et al.  Photoacoustic spectra and modes of vibration of TNT and RDX at CO2 laser wavelengths. , 2002, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[22]  Winnewisser,et al.  Precision Broadband Spectroscopy near 2 THz: Frequency-Stabilized Laser Sideband Spectrometer with Backward-Wave Oscillators. , 2000, Journal of molecular spectroscopy.

[23]  D. W. van der Weide,et al.  Broadband 10-300 GHz stimulus-response sensing for chemical and biological entities. , 2002, Physics in medicine and biology.

[24]  Gary A. Eiceman,et al.  Ion-mobility spectrometry as a fast monitor of chemical composition , 2002 .

[25]  Ching Wu,et al.  Construction and characterization of a high-flow, high-resolution ion mobility spectrometer for detection of explosives after personnel portal sampling. , 2002, Talanta.

[26]  H H Hill,et al.  Evaluation of suspected interferents for TNT detection by ion mobility spectrometry. , 2001, Talanta.

[27]  B. Caddy,et al.  Micellar electrokinetic capillary chromatography of high explosives utilising indirect fluorescence detection , 1996 .

[28]  B. Swanson,et al.  Molecular recognition and self-assembled polymer films for vapor phase detection of explosives. , 2001, Talanta.

[29]  R. Ewing,et al.  A critical review of ion mobility spectrometry for the detection of explosives and explosive related compounds. , 2001, Talanta.

[30]  Frances S. Ligler,et al.  Multi-analyte explosive detection using a fiber optic biosensor , 1999 .

[31]  Colin M. Hodges,et al.  The use of Fourier Transform Raman spectroscopy in the forensic identification of illicit drugs and explosives , 1990 .

[32]  Reinhard Niessner,et al.  Enzyme-Linked Immunosorbent Assay for the Determination of 2,4,6-Trinitrotoluene and Related Nitroaromatic Compounds , 1992 .

[33]  J. Yinon,et al.  Field detection and monitoring of explosives , 2002 .

[34]  Jinchun Xie,et al.  CAVITY RING-DOWN SPECTROSCOPY IN LIQUID PHASE , 2002 .

[35]  H. W. Lefevre,et al.  Explosives detection through fast-neutron time-of-flight attenuation measurements☆ , 1995 .

[36]  Frances S Ligler,et al.  Fabrication of a capillary immunosensor in polymethyl methacrylate. , 2002, Biosensors & bioelectronics.

[37]  Bruce D. Hammock,et al.  Immunochemical techniques for environmental analysis I. Immunosensors , 1995 .

[38]  A. Hilmi,et al.  Development of Electrokinetic Capillary Electrophoresis Equipped with Amperometric Detection for Analysis of Explosive Compounds , 1999 .

[39]  Xicheng Zhang,et al.  Free-space coherent broadband terahertz time-domain spectroscopy , 2001 .

[40]  Maneesha Singh,et al.  Explosives detection systems (EDS) for aviation security , 2003, Signal Process..

[41]  Frank K. Tittel,et al.  Compact laser difference-frequency spectrometer for multicomponent trace gas detection , 1998 .

[42]  T. Imasaka Diode lasers in analytical chemistry. , 1999, Talanta.

[43]  Robert D. Speller,et al.  Radiation-based security , 2001 .

[44]  J F Doussin,et al.  Multiple-pass cell for very-long-path infrared spectrometry. , 1999, Applied optics.

[45]  Raphael Lavi,et al.  Application of a unique scheme for remote detection of explosives , 2002 .

[46]  P. Dedon Abstracts, American Chemical Society Division of Chemical Toxicology, 226th ACS National Meeting, New York, New York, September 7−11, 2003 , 2003 .

[47]  U. Narang,et al.  Multianalyte detection using a capillary-based flow immunosensor. , 1998, Analytical biochemistry.

[48]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[49]  J. Zink,et al.  Sol−Gel Encapsulated Anti-Trinitrotoluene Antibodies in Immunoassays for TNT , 2000 .

[50]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[51]  E. Yeung,et al.  High-throughput single-molecule spectroscopy in free solution. , 2000, Analytical chemistry.

[52]  A. Gordin,et al.  SnifProbe: new method and device for vapor and gas sampling. , 2000, Journal of chromatography. A.

[53]  J H Luong,et al.  In‐line coupling capillary electrochromatography with amperometric detection for analysis of explosive compounds , 2000, Electrophoresis.

[54]  N. Gupta,et al.  AOTF Raman spectrometer for remote detection of explosives. , 2000, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[55]  Andrew G. Glen,et al.  APPL , 2001 .

[56]  H H Hill,et al.  Analysis of explosives using electrospray ionization/ion mobility spectrometry (ESI/IMS). , 2000, Talanta.

[57]  R. Dasari,et al.  Ultrasensitive chemical analysis by Raman spectroscopy. , 1999, Chemical reviews.

[58]  Joseph Wang,et al.  Remote electrochemical sensor for monitoring TNT in natural waters , 1998 .

[59]  Marcelo Blanco,et al.  NIR spectroscopy: a rapid-response analytical tool , 2002 .

[60]  T A Ranney,et al.  Chemical signatures of TNT-filled land mines. , 2001, Talanta.

[61]  R. Silbey,et al.  Current status of single-molecule spectroscopy: Theoretical aspects , 2002 .

[62]  Y. Kawabata,et al.  Ultramicro flow-cell for semiconductor laser fluorimetry. , 1986, Talanta.

[63]  Alim A. Fatah,et al.  Guide for the Selection of Commercial Explosives Detection Systems for Law Enforcement Applications | NIST , 1999 .

[64]  L. J. Myers,et al.  The scientific foundation and efficacy of the use of canines as chemical detectors for explosives. , 2001, Talanta.

[65]  Konstantin L. Vodopyanov,et al.  Application of mid-infrared cavity-ringdown spectroscopy to trace explosives vapor detection using a broadly tunable (6–8 μm) optical parametric oscillator , 2002 .

[66]  M. Orrit Single-molecule spectroscopy: The road ahead , 2002 .

[67]  M. Fayer,et al.  Nitro group asymmetric stretching mode lifetimes of molecules used in energetic materials , 1999 .

[68]  Chen Jian,et al.  Membrane for in situ optical detection of organic nitro compounds based on fluorescence quenching , 1990 .

[69]  A. Kusterbeck,et al.  Environmental immunoassay for the explosive RDX using a fluorescent dye-labeled antigen and the continuous-flow immunosensor , 1997 .

[70]  M. Walsh,et al.  Determination of nitroaromatic, nitramine, and nitrate ester explosives in soil by gas chromatography and an electron capture detector. , 2001, Talanta.

[71]  A. Konings FREE-RADICAL PATHOLOGY - AN INTRODUCTION , 1987 .

[72]  J. Akhavan Analysis of high-explosive samples by Fourier transform Raman spectroscopy , 1991 .

[73]  Allan D. Pierce,et al.  Acoustical Society of America , 2005 .

[74]  Ian R. Lewis,et al.  Raman spectroscopic studies of explosive materials: towards a fieldable explosives detector , 1995 .

[75]  V. S. Grechishkin NQR device for detecting plastic explosives, mines, and drugs , 1992 .

[76]  W. Moerner,et al.  Single-molecule optical spectroscopy of autofluorescent proteins , 2002 .

[77]  Qin Zhou,et al.  Fluorescent Chemosensors Based on Energy Migration in Conjugated Polymers: The Molecular Wire Approach to Increased Sensitivity , 1995 .

[78]  K. Sasaki,et al.  Distributions of C2 and C3 radical densities in laser-ablation carbon plumes measured by laser-induced fluorescence imaging spectroscopy , 2002 .

[79]  Gregory W. Kauffman,et al.  Pattern recognition analysis of optical sensor array data to detect nitroaromatic compound vapors , 2001 .

[80]  J. Douse Trace analysis of explosives at the low picogram level by silica capillary column gas—liquid chromatography with electron-capture detection , 1981 .

[82]  T. Gozani,et al.  Gamma ray spectroscopy features for detection of small explosives , 2003 .

[83]  P Atanasov,et al.  Immunosensors: electrochemical sensing and other engineering approaches. , 1998, Biosensors & bioelectronics.

[84]  A. Marshall,et al.  Composition of explosives by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. , 2002, Analytical chemistry.

[85]  D. Bonnell Scanning tunneling microscopy and spectroscopy of oxide surfaces , 1998 .

[86]  N. Lewis,et al.  A chemically diverse conducting polymer-based "electronic nose". , 1995, Proceedings of the National Academy of Sciences of the United States of America.