Electrochemical potential controlling flotation

Abstract The development of the understanding of flotation systems based on electrochemical concepts and techniques is reviewed. An improvement in devising flotation strategies has been achieved through the consideration of electrochemical potential as one of the parameters to be monitored and controlled in the laboratory. The progress that has been made in applying potential measurements in flotation plants is also examined.

[1]  W. Skinner,et al.  Surface modifications in the chalcopyrite-sulphite ion system. I. collectorless flotation, XPS and dissolution study , 1997 .

[2]  D. Fuerstenau,et al.  Effect of sodium sulfide additions on the pulp potential and amyl xanthate flotation of cerussite and galena , 1999 .

[3]  R. Yoon,et al.  Improving Pyrite Rejection by Galvanic Control , 1997 .

[4]  K. V. Sastry Challenges in Mineral Processing , 1989 .

[5]  W. J. Trahar,et al.  The natural flotability of chalcopyrite , 1977 .

[6]  R. Woods,et al.  Metals from Sulfide Minerals: The Role of Adsorption of Organic Reagent in Processing Technologies , 2003 .

[7]  D. Fuerstenau,et al.  The effect of potassium diethyldithiophosphate on the electrochemical properties of platinum, copper and copper sulfide in aqueous solutions , 1974 .

[8]  K. Wandelt,et al.  Solid-liquid interfaces : macroscopic phenomena, microscopic understanding , 2003 .

[9]  J. Gebhardt,et al.  Electrochemical conditioning of a mineral particle bed electrode for flotation , 1988 .

[10]  A. Pomianowski,et al.  Cyclic voltammetry of ethyl xanthate on a natural copper sulphide electrode , 1973 .

[11]  Brian E. Conway,et al.  Modern Aspects of Electrochemistry , 1974 .

[12]  R. Woods,et al.  An electrochemical investigation of the natural flotability of chalcopyrite , 1979 .

[13]  A. M. Buswell,et al.  The use of electrochemical measurements in the flotation of a platinum group minerals (PGM) bearing ore , 2002 .

[14]  I. Iwasaki,et al.  Grinding media wear and its effect on the flotation of sulfide minerals , 1984 .

[15]  Roe-Hoan Yoon,et al.  Cathodic protection to minimize corrosive wear in ball mills , 1997 .

[16]  Väinö Hintikka,et al.  Potential control in the flotation of sulphide minerals and precious metals , 1995 .

[17]  J. T. Woodcock,et al.  Principles of mineral flotation : the Wark Symposium , 1984 .

[18]  M. H. Jones Some recent developments in the measurement and control of xanthate, perxanthate, sulphide, and redox potential in flotation , 1991 .

[19]  R. L. Pozzo,et al.  Pyrite‐Pyrrhotite Grinding Media Interactions and Their Effects on Media Wear and Flotation , 1989 .

[20]  J. Gebhardt,et al.  Differential flotation of a chalcocite-pyrite particle bed by electrochemical control , 1987 .

[21]  D. Rand,et al.  Eh measurements in sulphide mineral slurries , 1984 .

[22]  C. Lara-Valenzuela,et al.  Metallurgical improvement of a lead/copper flotation stage by pulp potential control , 2000 .

[23]  J. T. Woodcock,et al.  Australasian Mining and metallurgy : the Sir Maurice Mawby memorial volume , 1993 .

[24]  R. Woods Oxidation of ethyl xanthate on platinum, gold, copper, and galena electrodes. Relation to the mechanism of mineral flotation , 1971 .

[25]  John Ralston,et al.  Eh and its consequences in sulphide mineral flotation , 1991 .

[26]  W. J. Trahar,et al.  The influence of metal hydroxides and collector on the flotation of chalcopyrite , 1991 .

[27]  R. Yoon,et al.  Surface studies of the collectorless flotation of chalcopyrite , 1984 .

[28]  K. Forssberg,et al.  Flotation of sulphide minerals , 1985 .

[29]  M. Ruonal,et al.  Different aspects of using electrochemical potential measurements in mineral processing , 1997 .