Three-dimensional fractional derivative model of smart constrained layer damping treatment for composite plates

Abstract This paper deals with the finite element analysis of active constrained layer damping (ACLD) of laminated composite plates using fractional order derivative constitutive relations for viscoelastic material. The constraining layer of the ACLD treatment is composed of the vertically/obliquely reinforced 1–3 piezoelectric composites (PZCs). The novelty of the present analysis is that the three dimensional fractional derivative model (FDM) of the constrained viscoelastic layer has been derived in time domain. A three-dimensional finite element model has been developed based on the FDM of the viscoelastic layer. Thin laminated plates with various boundary conditions and stacking sequences are emphatically analyzed to investigate the effectiveness of the three-dimensional FDM for both the passive and active control authority of the ACLD patch.

[1]  B. Azvine,et al.  Use of active constrained-layer damping for controlling resonant vibration , 1995 .

[2]  P. Hughes,et al.  Modeling of linear viscoelastic space structures , 1993 .

[3]  M. C. Ray,et al.  Active damping of geometrically nonlinear vibrations of doubly curved laminated composite shells , 2011 .

[4]  M. C. Ray,et al.  The performance of vertically reinforced 1–3 piezoelectric composites in active damping of smart structures , 2006 .

[5]  C. K. Lee,et al.  Piezoelectric modal sensor/actuator pairs for critical active damping vibration control , 1991 .

[6]  S. Poh,et al.  Performance of an active control system with piezoelectric actuators , 1988 .

[7]  M. Ray,et al.  Smart damping of laminated fuzzy fiber reinforced composite shells using 1–3 piezoelectric composites , 2013 .

[8]  M. C. Ray,et al.  Performance of vertically and obliquely reinforced 1–3 piezoelectric composites for active damping of laminated composite shells , 2008 .

[9]  M. C. Ray,et al.  Optimal Control of Laminated Shells Using Piezoelectric Sensor and Actuator Layers , 2003 .

[10]  Sathya Hanagud,et al.  OPTIMAL VIBRATION CONTROL BY THE USE OF PIEZOCERAMIC SENSORS AND ACTUATORS , 1992 .

[11]  M. Ray,et al.  Active Constrained Layer Damping of Smart Skew Laminated Composite Plates Using 1–3 Piezoelectric Composites , 2013 .

[12]  M. C. Ray,et al.  Active constrained layer damping of geometrically nonlinear transient vibrations of composite plates using piezoelectric fiber-reinforced composite , 2009 .

[13]  J. Reddy Mechanics of laminated composite plates and shells : theory and analysis , 1996 .

[14]  S. K. Sarangi,et al.  Smart damping of geometrically nonlinear vibrations of laminated composite beams using vertically reinforced 1–3 piezoelectric composites , 2010 .

[15]  Zhaobo Chen,et al.  Vibration control of beams with active constrained layer damping , 2008 .

[16]  Amr M. Baz,et al.  Optimum Placement and Control of Active Constrained Layer Damping using Modal Strain Energy Approach , 2002 .

[17]  A. Baz,et al.  Optimal vibration control with modal positive position feedback , 1996 .

[18]  Roger Stanway,et al.  ACTIVE CONSTRAINED LAYER DAMPING OF CLAMPED-CLAMPED PLATE VIBRATIONS , 2001 .

[19]  G. Lesieutre,et al.  Time Domain Modeling of Linear Viscoelasticity Using Anelastic Displacement Fields , 1995 .

[20]  B. Auld,et al.  Modeling 1-3 composite piezoelectrics: thickness-mode oscillations , 1991, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[21]  M. C. Ray,et al.  Active control of geometrically nonlinear vibrations of doubly curved smart sandwich shells using 1–3 piezoelectric composites , 2013 .

[22]  Lothar Gaul,et al.  Finite Element Formulation of Viscoelastic Constitutive Equations Using Fractional Time Derivatives , 2002 .

[23]  Young-Hun Lim,et al.  Closed loop finite-element modeling of active constrained layer damping in the time domain analysis , 2002 .

[24]  M. Ray,et al.  Control of geometrically nonlinear vibrations of skew laminated composite plates using skew or rectangular 1–3 piezoelectric patches , 2013 .

[25]  Amr M. Baz,et al.  OPTIMIZATION OF ENERGY DISSIPATION OF ACTIVE CONSTRAINED LAYER DAMPING TREATMENTS OF PLATES , 1997 .

[26]  M. C. Ray,et al.  On the Use of Vertically Reinforced 1-3 Piezoelectric Composites for Hybrid Damping of Laminated Composite Plates , 2007 .

[27]  Liyong Tong,et al.  Vibration Control of Plates Using Discretely Distributed Piezoelectric Quasi-Modal Actuators/Sensors , 2001 .

[28]  D. Golla Dynamics of viscoelastic structures: a time-domain finite element formulation , 1985 .

[29]  M. Ray,et al.  Active constrained layer damping of geometrically nonlinear vibrations of functionally graded plates using piezoelectric fiber-reinforced composites , 2008 .

[30]  M. Ray,et al.  Active constrained layer damping of smart laminated composite sandwich plates using 1–3 piezoelectric composites , 2012 .

[31]  Brian R. Mace,et al.  Arbitrary active constrained layer damping treatments on beams: Finite element modelling and experimental validation , 2006 .

[32]  M. Ray,et al.  Active control of geometrically nonlinear vibrations of functionally graded laminated composite plates using piezoelectric fiber reinforced composites , 2009 .

[33]  George A. Lesieutre,et al.  Finite element modeling of frequency-dependent material damping using augmenting thermodynamic fields , 1990 .

[34]  Brian H. Houston,et al.  Piezocomposites for Active Surface Control , 1999 .

[35]  E. Crawley,et al.  Use of piezoelectric actuators as elements of intelligent structures , 1987 .

[36]  T. Bailey,et al.  Distributed Piezoelectric-Polymer Active Vibration Control of a Cantilever Beam , 1985 .

[37]  A. C. Galucio,et al.  A Fractional Derivative Viscoelastic Model for Hybrid Active-Passive Damping Treatments in Time Domain - Application to Sandwich Beams , 2005 .

[38]  Andreas Kugi,et al.  Infinite-Dimensional Control of Nonlinear Beam Vibrations by Piezoelectric Actuator and Sensor Layers , 1999 .

[39]  D. S. Dolling,et al.  Flowfield scaling in sharp fin-induced shock wave/turbulent boundary-layer interaction , 1985 .

[40]  Laura Menini,et al.  Active vibration control of an elastic plate using multiple piezoelectric sensors and actuators , 2003, Simul. Model. Pract. Theory.

[41]  Peter J. Torvik,et al.  Fractional calculus-a di erent approach to the analysis of viscoelastically damped structures , 1983 .

[42]  Roger Ohayon,et al.  Finite element formulation of viscoelastic sandwich beams using fractional derivative operators , 2004 .