Simulating and Synthesizing Substructures Using Neural Network and Genetic Algorithms
暂无分享,去创建一个
The feasibility of simulating and synthesizing substructures by computational neural network models is illustrated by investigating a statically indeterminate beam, using both a 1-D and a 2-D plane stress modelling. The beam can be decomposed into two cantilevers with free-end loads. By training neural networks to simulate the cantilever responses to different loads, the original beam problem can be solved as a match-up between two subsystems under compatible interface conditions. The genetic algorithms are successfully used to solve the match-up problem. Simulated results are found in good agreement with the analytical or FEM solutions.
[1] Chuen-Tsai Sun,et al. Neuro-fuzzy And Soft Computing: A Computational Approach To Learning And Machine Intelligence [Books in Brief] , 1997, IEEE Transactions on Neural Networks.
[2] Martin T. Hagan,et al. Neural network design , 1995 .
[3] Henry T. Y. Yang. Finite Element Structural Analysis , 1985 .