Model study of the spinning of thermotropic liquid crystalline polymers: Fiber performance predictions and bounds on throughput

We apply a model for thermotropic liquid crystalline polymers (TLCPs) that couples hydrodynamics, anisotropic rodlike microstructural dynamics, free surface effects, and thermodynamics to study fiber spinning of these materials. The model incorporates a Doi type theory for the nematodynamics, along with physical constants, empirical correlations for air drag and functional heat loss coefficient, and rheological relations that are consistent with the melt processing of TLCPs. This new single-phase model (Forest et al., 1998) does not arbitrarily assume a rigid fiber of constant velocity below glass transition temperature of the TLCP, a feature that allows a multiparameter stability calculation of the critical draw ratio. For this study, fiber spinning steady states are computed in experimentally based physical regimes. We predict spun fiber performance properties (birefringence, modulus, and axial force), process sensitivity, and bounds on throughput (draw ratio) due to heat loss, air drag, the temperature variation between the melt and ambient, and the material properties of TLCPs. q 1999 John Wiley & Sons, Inc. Adv in Polym Techn 18: 314–335, 1999 Correspondence to: Qi Wang at qwang@math.iupui.edu.or tel: 317-274-8144. ADV WILEY RIGHT INTERACTIVE short standard MODEL STUDY OF SPINNING OF THERMOTROPIC LIQUID POLYMERS

[1]  R. C. Armstrong,et al.  Analysis of isothermal spinning of liquid‐crystalline polymers , 1993 .

[2]  M. Denn,et al.  Issues Concerning the Rate of Heat Transfer from a Spinline , 1992 .

[3]  Henry H. George,et al.  Model of steady‐state melt spinning at intermediate take‐up speeds , 1982 .

[4]  R. Larson,et al.  The effect of temperature and concentration on N1 and tumbling in a liquid crystal polymer , 1999 .

[5]  Susumu Kase,et al.  Studies on melt spinning. I. Fundamental equations on the dynamics of melt spinning , 1965 .

[6]  F. Beekmans,et al.  Determination of Orientation in Thermotropic Liquid Crystalline Polymer Films by Spectrographic Measurement of the Birefringence , 1996 .

[7]  N. Wagner,et al.  Rheology of region I flow in a lyotropic liquid-crystal polymer: The effects of defect texture , 1994 .

[8]  T. Matsuo,et al.  Studies on melt spinning. II. Steady‐state and transient solutions of fundamental equations compared with experimental results , 1967 .

[9]  C. Petrie,et al.  Fundamentals of fibre formation : A. Ziabicki, John Wiley & Sons, London, August 1976, 502 pages, price £19.50 ($ 39.00) , 1978 .

[10]  M. Matsui,et al.  Air Drag on a Continuous Filament in Melt Spinning , 1976 .

[11]  Yatish T. Shah,et al.  On the Stability of Nonisothermal Fiber Spinning , 1972 .

[12]  J. Spruiell,et al.  On-line studies and computer simulation of the melt spinning of nylon-66 filaments , 1988 .

[13]  Stephen E. Bechtel,et al.  Exploiting accurate spinline measurements for elongational material characterization , 1997 .

[14]  N. Mori,et al.  Numerical simulation of the spinning flow of liquid crystalline polymers , 1997 .

[15]  Qi Wang Biaxial steady states and their stability in shear flows of liquid crystal polymers , 1997 .

[16]  Margaret H. Wright,et al.  A Deferred Correction Method for Nonlinear Two-Point Boundary Value Problems: Implementation and Numerical Evaluation , 1991, SIAM J. Sci. Comput..

[17]  Y. Shah,et al.  On the Stability of Nonisothermal Fiber Spinning-General Case , 1972 .

[18]  Stephen E. Bechtel,et al.  A thin-filament melt spinning model with radial resolution of temperature and stress , 1998 .

[19]  W. Kuhn,et al.  Beziehungen zwischen elastischen Konstanten und Dehnungsdoppelbrechung hochelastischer Stoffe , 1942 .

[20]  A. B. Metzner,et al.  Rheological properties of polymeric liquid crystals , 1986 .

[21]  Andrzej Ziabicki,et al.  Fundamentals of fibre formation: The science of fibre spinning and drawing , 1976 .

[22]  Robert C. Armstrong,et al.  A constitutive equation for liquid‐crystalline polymer solutions , 1993 .

[23]  M. Gregory Forest,et al.  1-D models for thin filaments of liquid-crystalline polymers: coupling of orientation and flow in the stability of simple solutions , 1997 .

[24]  M. Gregory Forest,et al.  One dimensional isothermal spinning models for liquid crystalline polymer fibers , 1997 .

[25]  B. P. Huynh,et al.  Study of the non-isothermal glass fibre drawing process , 1983 .

[26]  D. Gregory Rheological properties of molten poly(ethylene terephthalate) , 1972 .

[27]  Susumu Kase,et al.  Studies on melt spinning. IV. On the stability of melt spinning , 1974 .

[28]  S. Edwards,et al.  The Theory of Polymer Dynamics , 1986 .