Quantum Block and Synchronizable Codes Derived from Certain Classes of Polynomials

One central theme in quantum error-correction is to construct quantum codes that have a large minimum distance. In this paper, we first present a construction of classical codes based on certain class of polynomials. Through these classical codes, we are able to obtain some new quantum codes. It turns out that some of quantum codes exhibited here have better parameters than the ones available in the literature. Meanwhile, we give a new class of quantum synchronizable codes with highest possible tolerance against misalignment from duadic codes.

[1]  Andrew M. Steane Enlargement of Calderbank-Shor-Steane quantum codes , 1999, IEEE Trans. Inf. Theory.

[2]  A. Steane Multiple-particle interference and quantum error correction , 1996, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[3]  N. J. A. Sloane,et al.  Quantum Error Correction Via Codes Over GF(4) , 1998, IEEE Trans. Inf. Theory.

[4]  Eric M. Rains Nonbinary quantum codes , 1999, IEEE Trans. Inf. Theory.

[5]  Chaoping Xing,et al.  A Construction of New Quantum MDS Codes , 2013, IEEE Transactions on Information Theory.

[6]  H. Niederreiter,et al.  Symmetric Polynomials and Some Good Codes , 2001 .

[7]  Shor,et al.  Scheme for reducing decoherence in quantum computer memory. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[8]  Chaoping Xing,et al.  Asymptotic bounds on quantum codes from algebraic geometry codes , 2006, IEEE Transactions on Information Theory.

[9]  Yuichiro Fujiwara Block synchronization for quantum information , 2012, ArXiv.

[10]  Hao Chen,et al.  Quantum codes from concatenated algebraic-geometric codes , 2005, IEEE Transactions on Information Theory.

[11]  Alexei E. Ashikhmin,et al.  Nonbinary quantum stabilizer codes , 2001, IEEE Trans. Inf. Theory.

[12]  Chaoping Xing,et al.  A new construction of quantum error-correcting codes , 2007 .

[13]  W. Cary Huffman,et al.  Fundamentals of Error-Correcting Codes , 1975 .

[14]  Martin Steinbach,et al.  A class of quaternary linear codes improving known minimum distances , 2016, Des. Codes Cryptogr..

[15]  Peter Vandendriessche,et al.  Quantum Synchronizable Codes From Finite Geometries , 2013, IEEE Transactions on Information Theory.

[16]  Chaoping Xing,et al.  A class of linear codes with good parameters , 2000, IEEE Trans. Inf. Theory.

[17]  G. Gadioli La Guardia,et al.  On the Construction of Nonbinary Quantum BCH Codes , 2012, IEEE Transactions on Information Theory.

[18]  Pradeep Kiran Sarvepalli,et al.  On Quantum and Classical BCH Codes , 2006, IEEE Transactions on Information Theory.

[19]  Lin Xiaoyan Quantum cyclic and constacyclic codes , 2004, IEEE Transactions on Information Theory.

[20]  Vladimir D. Tonchev,et al.  Algebraic techniques in designing quantum synchronizable codes , 2013, ArXiv.

[21]  Yang Ding,et al.  Good Linear Codes from Polynomial Evaluations , 2012, IEEE Transactions on Communications.

[22]  Jinhong Yuan,et al.  Quantum synchronizable codes from quadratic residue codes and their supercodes , 2014, 2014 IEEE Information Theory Workshop (ITW 2014).

[23]  Chaoping Xing,et al.  A construction of quantum codes via a class of classical polynomial codes , 2012, 2012 IEEE International Symposium on Information Theory Proceedings.

[24]  N. Sloane,et al.  Quantum Error Correction Via Codes Over GF , 1998 .