Unbound states in quantum heterostructures

We report in this review on the electronic continuum states of semiconductor Quantum Wells and Quantum Dots and highlight the decisive part played by the virtual bound states in the optical properties of these structures. The two particles continuum states of Quantum Dots control the decoherence of the excited electron – hole states. The part played by Auger scattering in Quantum Dots is also discussed.

[1]  Gerhard Abstreiter,et al.  Normal-incident intersubband photocurrent spectroscopy on InAs/GaAs quantum dots , 1999 .

[2]  Gerhard Abstreiter,et al.  Influence of growth conditions on the photoluminescence of self-assembled InAs/GaAs quantum dots , 1999 .

[3]  A. Zunger On the Farsightedness (hyperopia) of the Standard k · p Model , 2002 .

[4]  Egeler,et al.  Electron relaxation in quantum dots by means of Auger processes. , 1992, Physical review. B, Condensed matter.

[5]  T. Kuhn,et al.  Transport of a wave packet through nanostructures : Quantum kinetics of carrier capture processes , 2005 .

[6]  Garnett W. Bryant,et al.  Electron-hole correlations in semiconductor quantum dots with tight-binding wave functions , 2001 .

[7]  D. Vvedensky,et al.  Quantum dots : fundamentals, applications, and frontiers , 2005 .

[8]  G. Bastard,et al.  Phonon scattering and energy relaxation in two-, one-, and zero-dimensional electron gases. , 1990, Physical review. B, Condensed matter.

[9]  A. Forchel,et al.  Importance of Auger recombination in InAs 1.3 /spl mu/m quantum dot lasers , 2003 .

[10]  M. Bichler,et al.  Spin-preserving ultrafast carrier capture and relaxation in InGaAs quantum dots , 2005 .

[11]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[12]  J. Delft,et al.  Absorption and emission in quantum dots : Fermi surface effects of Anderson excitons , 2005, cond-mat/0502329.

[13]  Kondo excitons in self-assembled quantum dots , 2002, cond-mat/0211155.

[14]  M. Cardona,et al.  Fundamentals of semiconductors : physics and materials properties , 1997 .

[15]  Y. Arakawa,et al.  EFFICIENT CARRIER RELAXATION MECHANISM IN INGAAS/GAAS SELF-ASSEMBLED QUANTUM DOTS BASED ON THE EXISTENCE OF CONTINUUM STATES , 1999 .

[16]  A. Lemaître,et al.  Efficient acoustic phonon broadening in single self-assembled InAs/GaAs quantum dots , 2001 .

[17]  A. Vasanelli,et al.  Continuous absorption background and decoherence in quantum dots. , 2002, Physical Review Letters.

[18]  J. Mørk,et al.  One- and two-phonon capture processes in quantum dots , 2002 .

[19]  A. Holmes,et al.  Carrier relaxation and quantum decoherence of excited states in self-assembled quantum dots , 2001 .

[20]  B. F. Levine,et al.  Quantum‐well infrared photodetectors , 1993 .

[21]  G. Bastard,et al.  Phonon-assisted capture and intradot Auger relaxation in quantum dots , 1999 .

[22]  B. Ridley,et al.  Effective-mass eigenfunctions in superlattices and their role in well-capture , 1986 .

[23]  P. Bhattacharya,et al.  Far-infrared photoconductivity in self-organized InAs quantum dots , 1998 .

[24]  Shih-Yen Lin,et al.  Quantum Dot Infrared Photodetectors , 2018, VLSI Micro- and Nanophotonics.

[25]  Andrew J. Williamson,et al.  InAs quantum dots: Predicted electronic structure of free-standing versus GaAs-embedded structures , 1999 .

[26]  J. Mørk,et al.  Geometry dependence of Auger carrier capture rates into cone-shaped self-assembled quantum dots , 2003 .

[27]  Albrecht,et al.  Rapid carrier relaxation in self-assembled InxGa1-xAs/GaAs quantum dots. , 1996, Physical review. B, Condensed matter.

[28]  Brum,et al.  Resonant carrier capture by semiconductor quantum wells. , 1986, Physical review. B, Condensed matter.

[29]  Tilmann Kuhn,et al.  Electron-phonon dynamics in optically excited quantum dots: Exact solution for multiple ultrashort laser pulses , 2002 .

[30]  R Richard Nötzel,et al.  Role of the continuum background for carrier relaxation in InAs quantum dots , 2005 .

[31]  Hess,et al.  Electron capture in GaAs quantum wells. , 1994, Physical review. B, Condensed matter.

[32]  G. Bastard,et al.  Excitonic polarons in semiconductor quantum dots. , 2002, Physical review letters.

[33]  Bassani,et al.  Bound and resonant electron states in quantum dots: The optical spectrum. , 1996, Physical review. B, Condensed matter.

[34]  G. Medeiros-Ribeiro,et al.  Storage of electrons and holes in self-assembled InAs quantum dots , 1999 .

[35]  Naoto Horiguchi,et al.  Quantum Dot Infrared Photodetector Using Modulation Doped InAs Self-Assembled Quantum Dots , 1999 .

[36]  D. Bouwmeester,et al.  The Physics of Quantum Information , 2000 .

[37]  Quantum Transport in Semiconductor Nanostructures , 2004, cond-mat/0412664.

[38]  Khaled Karrai,et al.  Hybridization of electronic states in quantum dots through photon emission , 2004, Nature.

[39]  J. Gerard,et al.  Electron Phonon Interaction and Polaron Effects in Quantum Dots , 2001 .

[40]  T. F. Boggess,et al.  Ultrafast electron capture into p-modulation-doped quantum dots , 2004 .

[41]  J. Mørk,et al.  Influence of quasibound states on the carrier capture in quantum dots , 2002 .

[42]  Yozo Shimada,et al.  Bound-to-continuum intersubband photoconductivity of self-assembled InAs quantum dots in modulation-doped heterostructures , 1999 .

[43]  Jagdeep Shah,et al.  Hot Carriers in Semiconductor Nanostructures: Physics and Applications , 1992 .

[44]  A. Messiah Quantum Mechanics , 1961 .

[45]  Shiang-Feng Tang,et al.  Near-room-temperature operation of an InAs/GaAs quantum-dot infrared photodetector , 2001 .

[46]  Alexander V. Uskov,et al.  Auger carrier capture kinetics in self-assembled quantum dot structures , 1998 .

[47]  J. M. Rorison,et al.  Quantum Dot Heterostructures , 2000 .

[48]  G. Medeiros-Ribeiro,et al.  Shell structure and electron-electron interaction in self-assembled InAs quantum dots , 1996, cond-mat/9609270.

[49]  P. Hawrylak,et al.  Theory of photoluminescence from modulation-doped self-assembled quantum dots in a magnetic field , 1997 .

[50]  G. Bastard,et al.  Strong Electron-Phonon Coupling Regime in Quantum Dots: Evidence for Everlasting Resonant Polarons , 1999 .

[51]  G. Bastard,et al.  Intraband transitions in quantum dot–superlattice heterostructures , 2005 .

[52]  J. Merz,et al.  Experimental determination of Auger capture coefficients in self-assembled quantum dots , 2000 .

[53]  L. Marsal,et al.  Acoustic phonon broadening mechanism in single quantum dot emission , 2001 .

[54]  B. Gerardot,et al.  Temperature-dependent linewidth of charged excitons in semiconductor quantum dots: Strongly broadened ground state transitions due to acoustic phonon scattering , 2004 .

[55]  M. Segev,et al.  Mid-infrared photoconductivity in InAs quantum dots , 1997 .

[56]  Frank Jahnke,et al.  Many-body theory of carrier capture and relaxation in semiconductor quantum-dot lasers , 2004 .

[57]  Simon Fafard,et al.  Carrier energy relaxation by means of Auger processes in InAs/GaAs self-assembled quantum dots , 1999 .

[58]  F. Rossi Semiconductor Macroatoms: Basics Physics and Quantum-Device Applications , 2005 .

[59]  Sam Kyu Noh,et al.  Effects of high potential barrier on InAs quantum dots and wetting layer , 2002 .

[60]  J. Devreese,et al.  Photoluminescence of spherical quantum dots , 1998 .

[61]  Christophe Delerue,et al.  Nanostructures: Theory and Modelling , 2004 .

[62]  Michel Gendry,et al.  Polarized front-illumination response in intraband quantum dot infrared photodetectors at 77 K , 2001 .

[63]  D. Bimberg,et al.  Electronic and optical properties of strained quantum dots modeled by 8-band k⋅p theory , 1999 .

[64]  P. Petroff,et al.  Intersublevel transitions in InAs/GaAs quantum dots infrared photodetectors , 1998 .

[65]  G. Strasser,et al.  Energy level engineering in InAs quantum dot nanostructures , 2002 .

[66]  Pawel Hawrylak,et al.  Response spectra from mid- to far-infrared, polarization behaviors, and effects of electron numbers in quantum-dot photodetectors , 2003 .

[67]  C. cohen-tannoudji,et al.  Quantum Mechanics: , 2020, Fundamentals of Physics II.

[68]  E. Finkman,et al.  Midinfrared absorption and photocurrent spectroscopy of InAs/GaAs self-assembled quantum dots , 2001 .

[69]  J. Linnett,et al.  Quantum mechanics , 1975, Nature.

[70]  Benisty,et al.  Intrinsic mechanism for the poor luminescence properties of quantum-box systems. , 1991, Physical review. B, Condensed matter.

[71]  G. Bastard,et al.  Binding energies of excitons and charged excitons in GaAsGa(In)As quantum dots , 1996 .

[72]  M. S. Skolnick,et al.  Continuum transitions and phonon coupling in single self-assembled Stranski-Krastanow quantum dots , 2003 .

[73]  S. Marcinkevičius,et al.  Carrier capture and escape in In x Ga 1 − x A s / G a A s quantum dots: Effects of intermixing , 1999 .

[74]  Joe C. Campbell,et al.  Inas quantum dot infrared photodetectors with In0.15Ga0.85As strain-relief cap layers , 2002 .

[75]  H. Sakaki,et al.  Fano profile in intersubband transitions in InAs quantum dots , 2000 .

[76]  B. Gerardot,et al.  Voltage control of the spin dynamics of an exciton in a semiconductor quantum dot. , 2005, Physical review letters.

[77]  G. Bastard Quantum-size effects in the continuum states of semiconductor quantum wells , 1984 .

[78]  Jukka Tulkki,et al.  Carrier relaxation dynamics in quantum dots: scattering mechanisms and state-filling effects , 1997 .

[79]  Alfred Forchel,et al.  Optical transitions and carrier relaxation in self assembled InAs/GaAs quantum dots , 1996 .

[80]  R. T. Phillips,et al.  Carrier Relaxation in (GaIn)As Quantum Dots , 1997 .

[81]  A. R. Kovsh,et al.  Optical and structural properties of InAs quantum dots in a GaAs matrix for a spectral range up to 1.7 μm , 1999 .