Highly Stretchable Polymer Transistors Consisting Entirely of Stretchable Device Components

[1]  Stephanie J. Benight,et al.  Stretchable and self-healing polymers and devices for electronic skin , 2013 .

[2]  Yonggang Huang,et al.  Ultrathin conformal devices for precise and continuous thermal characterization of human skin. , 2013, Nature materials.

[3]  Takao Someya,et al.  Ultrathin, highly flexible and stretchable PLEDs , 2013, Nature Photonics.

[4]  Minkwan Shin,et al.  Highly Stretchable Patterned Gold Electrodes Made of Au Nanosheets , 2013, Advanced materials.

[5]  S. Lee,et al.  Enhanced stretchability of poly(3-hexylthiophene) thin films by ion gel gate embedding , 2013, Macromolecular Research.

[6]  Tsu-Wei Chou,et al.  Carbon Nanotube Fiber Based Stretchable Conductor , 2013 .

[7]  Guggi Kofod,et al.  Soft Conductive Elastomer Materials for Stretchable Electronics and Voltage Controlled Artificial Muscles , 2013, Advanced materials.

[8]  Kinam Kim,et al.  Highly stretchable electric circuits from a composite material of silver nanoparticles and elastomeric fibres. , 2012, Nature nanotechnology.

[9]  Benjamin C. K. Tee,et al.  An electrically and mechanically self-healing composite with pressure- and flexion-sensitive properties for electronic skin applications. , 2012, Nature nanotechnology.

[10]  John A. Rogers,et al.  Highly Sensitive Skin‐Mountable Strain Gauges Based Entirely on Elastomers , 2012 .

[11]  Yong Zhu,et al.  Highly Conductive and Stretchable Silver Nanowire Conductors , 2012, Advanced materials.

[12]  Jan Vanfleteren,et al.  Integration of stretchable and washable electronic modules for smart textile applications , 2012 .

[13]  T. Lodge,et al.  “Cut and Stick” Rubbery Ion Gels as High Capacitance Gate Dielectrics , 2012, Advanced materials.

[14]  S. Ko,et al.  Highly Stretchable and Highly Conductive Metal Electrode by Very Long Metal Nanowire Percolation Network , 2012, Advanced materials.

[15]  K. Hata,et al.  Mechanically durable and highly conductive elastomeric composites from long single-walled carbon nanotubes mimicking the chain structure of polymers. , 2012, Nano letters.

[16]  Andrew G. Gillies,et al.  Carbon nanotube active-matrix backplanes for conformal electronics and sensors. , 2011, Nano letters.

[17]  J. Rogers,et al.  Stretchable graphene transistors with printed dielectrics and gate electrodes. , 2011, Nano letters.

[18]  Zhibin Yu,et al.  Intrinsically Stretchable Polymer Light‐Emitting Devices Using Carbon Nanotube‐Polymer Composite Electrodes , 2011, Advanced materials.

[19]  Peng Liu,et al.  Cross‐Stacked Superaligned Carbon Nanotube Films for Transparent and Stretchable Conductors , 2011 .

[20]  Zhigang Wu,et al.  A Microfluidic, Reversibly Stretchable, Large‐Area Wireless Strain Sensor , 2011 .

[21]  H. Choi,et al.  Highly conductive, printable and stretchable composite films of carbon nanotubes and silver. , 2010, Nature nanotechnology.

[22]  Andrew G. Gillies,et al.  Nanowire active-matrix circuitry for low-voltage macroscale artificial skin. , 2010, Nature materials.

[23]  Jong-Hyun Ahn,et al.  High-performance flexible graphene field effect transistors with ion gel gate dielectrics. , 2010, Nano letters.

[24]  M. Lima,et al.  Elastomeric Conductive Composites Based on Carbon Nanotube Forests , 2010, Advanced materials.

[25]  Unyong Jeong,et al.  Periodic array of polyelectrolyte-gated organic transistors from electrospun poly(3-hexylthiophene) nanofibers. , 2010, Nano letters.

[26]  Yi Cui,et al.  Stretchable, porous, and conductive energy textiles. , 2010, Nano letters.

[27]  Yonggang Huang,et al.  Printed Assemblies of Inorganic Light-Emitting Diodes for Deformable and Semitransparent Displays , 2009, Science.

[28]  Yang Yang,et al.  Energy level alignment of poly(3-hexylthiophene): [6,6]-phenyl C61 butyric acid methyl ester bulk heterojunction , 2009 .

[29]  T. Someya,et al.  Stretchable active-matrix organic light-emitting diode display using printable elastic conductors. , 2009, Nature materials.

[30]  S. Lee,et al.  Continuous production of uniform poly(3-hexylthiophene) (P3HT) nanofibers by electrospinning and their electrical properties , 2009 .

[31]  V. Maheshwari,et al.  Tactile devices to sense touch on a par with a human finger. , 2008, Angewandte Chemie.

[32]  T. Someya,et al.  A Rubberlike Stretchable Active Matrix Using Elastic Conductors , 2008, Science.

[33]  G. Cho,et al.  Application of PU-sealing into Cu/Ni electroless plated polyester fabrics for e-textiles , 2007 .

[34]  J. Rogers,et al.  Structural forms of single crystal semiconductor nanoribbons for high-performance stretchable electronics , 2007 .

[35]  John A Rogers,et al.  Controlled buckling of semiconductor nanoribbons for stretchable electronics , 2006, Nature nanotechnology.

[36]  A. N. Aleshin Polymer Nanofibers and Nanotubes: Charge Transport and Device Applications , 2006, cond-mat/0701781.

[37]  Jean M. J. Fréchet,et al.  Dependence of Regioregular Poly(3-hexylthiophene) Film Morphology and Field-Effect Mobility on Molecular Weight , 2005 .

[38]  E. W. Meijer,et al.  Two-dimensional charge transport in self-organized, high-mobility conjugated polymers , 1999, Nature.

[39]  B. Alphenaar,et al.  SMART MATERIALS AND STRUCTURES , 2009 .