Reflections on mathematical models of deformation waves in elastic microstructured solids

This paper describes the mathematical models derived for wave propagation in solids with internal structure. The focus of the overview is on one-dimensional models which enlarge the classical wave equation by higher-order terms. The crucial parameter in models is the ratio of characteristic lengths of the excitation and the internal structure. Novel approaches based on the concept of internal variables permit one to take the thermodynamical conditions into account directly. Examples of generalisations include frequency-dependent multiscale models, nonlinear models and thermoelasticity. The substructural complexity within the framework of elasticity gives rise to dispersion of waves. Dispersion analysis shows that acoustic and optical branches of dispersion curves together describe properly wave phenomena in microstructured solids. In the case of nonlinear models, the governing equations are of the Boussinesq type. It is argued that such models of waves in solids with microstructure display properties that can be analysed as phenomena of complexity.

[1]  Jonathan A. Zimmerman,et al.  Continuum Definitions for Stress in Atomistic simulation , 2002 .

[2]  S. Forest Mechanics of generalized continua: construction by homogenizaton , 1998 .

[3]  A. Cemal Eringen,et al.  Linear theory of nonlocal elasticity and dispersion of plane waves , 1972 .

[4]  Gérard A. Maugin,et al.  Strain Solitons in Solids and How to Construct Them , 2020 .

[5]  J. Janno,et al.  Solitary waves in nonlinear microstructured materials , 2005 .

[6]  Min Zhou Thermomechanical continuum representation of atomistic deformation at arbitrary size scales , 2005, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[7]  C. Sun,et al.  Modeling micro-inertia in heterogeneous materials under dynamic loading , 2002 .

[8]  C. Sun,et al.  A Higher-Order Continuum Model for Elastic Media with Multiphased Microstructure , 2008 .

[9]  A. Tyas,et al.  Asymptotic equivalence of homogenisation procedures and fine-tuning of continuum theories , 2008 .

[10]  P. M. Mariano,et al.  Computational aspects of the mechanics of complex materials , 2005 .

[11]  A. Porubov Amplification of nonlinear strain waves in solids , 2003 .

[12]  M. Braun,et al.  Hierarchies of Waves in Nonclassical Materials , 2006 .

[13]  Victor Birman,et al.  Modeling and Analysis of Functionally Graded Materials and Structures , 2007 .

[14]  Alexey V. Porubov,et al.  On Boussinesq s paradigm in nonlinear wave propagation , 2007 .

[15]  K. Tamm,et al.  Numerical simulation of interaction of solitary deformation waves in microstructured solids , 2008 .

[16]  I. S. Sokolnikoff Mathematical theory of elasticity , 1946 .

[17]  L. Chambers Linear and Nonlinear Waves , 2000, The Mathematical Gazette.

[18]  J. Fish,et al.  From Homogenization to Generalized Continua , 2012 .

[19]  A. Eringen Microcontinuum Field Theories , 2020, Advanced Continuum Theories and Finite Element Analyses.

[20]  J. Engelbrecht,et al.  Waves in microstructured materials and dispersion , 2005 .

[21]  Tarmo Soomere,et al.  EDITORIAL. Special issue devoted to the International Conference on Complexity of Nonlinear Waves. Highlights in the research into complexity of nonlinear waves , 2010 .

[22]  E. Kröner Interrelations between Various Branches of Continuum Mechanics , 1968 .

[23]  Gérard A. Maugin,et al.  Numerical Simulation of Waves and Fronts in Inhomogeneous Solids , 2008 .

[24]  A. G. Every,et al.  Determination of the dispersive elastic constants of the cubic crystals Ge, Si, GaAs, and InSb , 2008 .

[25]  Ronald E. Miller,et al.  Atomistic/continuum coupling in computational materials science , 2003 .

[26]  Youping Chen,et al.  Determining material constants in micromorphic theory through phonon dispersion relations , 2003 .

[27]  A. Eskandarian,et al.  Examining the physical foundation of continuum theories from the viewpoint of phonon dispersion relation , 2003 .

[28]  A. Eringen Micropolar fluids with stretch , 1969 .

[29]  S. Vidoli,et al.  Generalized Hooke's law for isotropic second gradient materials , 2009, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[30]  V. Erofeyev Wave processes in solids with microstructure , 2003 .

[31]  A. Salupere,et al.  Scaling and hierarchies of wave motion in solids , 2014 .

[32]  Wing Kam Liu,et al.  Characterization of heterogeneous solids via wave methods in computational microelasticity , 2011 .

[33]  A. Berezovski,et al.  Nonlinear deformation waves in solids and dispersion , 2007 .

[34]  K. Tamm,et al.  Dispersion Analysis of Wave Motion in Microstructured Solids , 2010 .

[35]  J. Engelbrecht Nonlinear Wave Dynamics , 1997 .

[36]  G. Maugin On the thermomechanics of continuous media with diffusion and/or weak nonlocality , 2006 .

[37]  A. Cemal Eringen,et al.  Nonlinear theory of continuous media , 1962 .

[38]  K. Tamm,et al.  Waves in microstructured solids and the Boussinesq paradigm , 2011 .

[39]  I. Andrianov,et al.  Dynamic homogenization and wave propagation in a nonlinear 1D composite material , 2013 .

[40]  D. Beskos,et al.  Wave dispersion in gradient elastic solids and structures: A unified treatment , 2009 .

[41]  A. Berezovski,et al.  Multiscale modeling of microstructured solids , 2010 .

[42]  Jan Drewes Achenbach,et al.  Continuum Theory for a Laminated Medium , 1968 .

[43]  J. Achenbach,et al.  On the Vibrations of a Laminated Body , 1968 .

[44]  Solitary waves on nonlinear elastic rods. I , 1984 .

[45]  A. Askar Lattice Dynamical Foundations of Continuum Theories: Elasticity, Piezoelectricity, Viscoelasticity, Plasticity , 1986 .

[46]  Wing Kam Liu,et al.  Microelastic wave field signatures and their implications for microstructure identification , 2012 .

[47]  Glaucio H. Paulino,et al.  Micromechanics-based elastic model for functionally graded materials with particle interactions , 2004 .

[48]  K. Tamm,et al.  On the influence of internal degrees of freedom on dispersion in microstructured solids , 2013 .

[49]  Andrei V. Metrikine,et al.  Higher-order continua derived from discrete media: continualisation aspects and boundary conditions , 2005 .

[50]  Luca Placidi,et al.  Wave propagation in relaxed micromorphic continua: modeling metamaterials with frequency band-gaps , 2013, 1309.1722.

[51]  Youping Chen,et al.  Connecting molecular dynamics to micromorphic theory. (II). Balance laws , 2003 .

[52]  Pierre Maurice Marie Duhem,et al.  Traité D'Énergétique ou de Thermodynamique Générale , 1913 .

[53]  C. Daraio,et al.  Tunability of solitary wave properties in one-dimensional strongly nonlinear phononic crystals. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[54]  J. Engelbrecht Nonlinear Wave Dynamics: Complexity and Simplicity , 1997 .

[55]  Azim Eskandarian,et al.  Atomistic viewpoint of the applicability of microcontinuum theories , 2004 .

[56]  Attila Askar,et al.  Lattice dynamical foundations of continuum theories , 1986 .

[57]  N. Challamel,et al.  A dispersive wave equation using nonlocal elasticity , 2009 .

[58]  H. Askes,et al.  One-dimensional dynamically consistent gradient elasticity models derived from a discrete microstructure: Part 2: Static and dynamic response , 2002 .

[59]  P. Germain,et al.  The Method of Virtual Power in Continuum Mechanics. Part 2: Microstructure , 1973 .

[60]  P. Ván,et al.  Weakly nonlocal thermoelasticity for microstructured solids: microdeformation and microtemperature , 2014 .

[61]  Andrei V. Metrikine,et al.  One-dimensional dynamically consistent gradient elasticity models derived from a discrete microstructure: Part 1: Generic formulation , 2002 .

[62]  L. J. Wang,et al.  Transparent anomalous dispersion and superluminal light-pulse propagation at a negative group velocity , 2001 .

[63]  G. Maugin Continuum Mechanics Through the Twentieth Century: A Concise Historical Perspective , 2013 .

[64]  Arkadi Berezovski,et al.  Internal Variables and Dynamic Degrees of Freedom , 2006, cond-mat/0612491.

[65]  H. Askes,et al.  Four simplified gradient elasticity models for the simulation of dispersive wave propagation , 2008 .

[66]  Franck J. Vernerey,et al.  Multi-scale micromorphic theory for hierarchical materials , 2007 .

[67]  J. Engelbrecht,et al.  On modelling dispersion in microstructured solids , 2008 .

[68]  Pradeep Sharma,et al.  A novel atomistic approach to determine strain-gradient elasticity constants: Tabulation and comparison for various metals, semiconductors, silica, polymers and the (Ir) relevance for nanotechnologies , 2007 .

[69]  Paolo Maria Mariano,et al.  Multifield theories in mechanics of solids , 2002 .

[70]  Fadil Santosa,et al.  A dispersive effective medium for wave propagation in periodic composites , 1991 .

[71]  Patrizio Neff,et al.  A Geometrically Exact Micromorphic Model for Elastic Metallic Foams Accounting for Affine Microstructure. Modelling, Existence of Minimizers, Identification of Moduli and Computational Results , 2007 .

[72]  G. Maugin,et al.  Generalized thermomechanics with dual internal variables , 2011 .

[73]  A. Casasso,et al.  Wave propagation in solids with vectorial microstructures , 2010 .

[74]  Gregory M. Odegard,et al.  Computational materials: Multi-scale modeling and simulation of nanostructured materials , 2005 .

[75]  Luca Placidi,et al.  A unifying perspective: the relaxed linear micromorphic continuum , 2013, Continuum Mechanics and Thermodynamics.

[76]  C. Christov,et al.  Well-posed Boussinesq paradigm with purely spatial higher-order derivatives. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[77]  M. Berezovski,et al.  Influence of microstructure on thermoelastic wave propagation , 2013, Acta Mechanica.

[78]  R. D. Mindlin Micro-structure in linear elasticity , 1964 .

[79]  Jacob Fish,et al.  Non‐local dispersive model for wave propagation in heterogeneous media: one‐dimensional case , 2002 .

[80]  E. Schrödinger Zur Dynamik elastisch gekoppelter Punktsysteme , 1914 .

[81]  Dimitrios I. Fotiadis,et al.  Derivation of Mindlin’s first and second strain gradient elastic theory via simple lattice and continuum models , 2012 .

[82]  Jonathan A. Zimmerman,et al.  Reconsideration of Continuum Thermomechanical Quantities in Atomic Scale Simulations , 2008 .

[83]  N. Steinmann Modeling microstructured materials – a comparison of gradient and micromorphic continua , 2007 .

[84]  A. Berezovski,et al.  Thermoelastic waves in microstructured solids: Dual internal variables approach , 2013 .

[85]  G. Maugin Nonlinear Waves in Elastic Crystals , 2000 .

[86]  Generalized Mathematical Homogenization of Atomistic Media at Finite Temperatures , 2005 .

[87]  A. Cemal Eringen,et al.  NONLINEAR THEORY OF SIMPLE MICRO-ELASTIC SOLIDS-I , 1964 .

[88]  M. Braun,et al.  On one-dimensional solitary waves in microstructured solids , 2010 .

[89]  J. Janno,et al.  An inverse solitary wave problem related to microstructured materials , 2005 .

[90]  P. Neff,et al.  A new paradigm: the linear isotropic Cosserat model with conformally invariant curvature energy , 2009 .

[91]  Eric Falcon,et al.  Solitary waves in a chain of beads under Hertz contact , 1997 .

[92]  Mason A. Porter,et al.  Highly Nonlinear Solitary Waves in Heterogeneous Periodic Granular Media , 2007, 0712.3552.

[93]  J. Awrejcewicz,et al.  Improved Continuous Models for Discrete Media , 2010 .

[94]  Esther T. Akinlabi,et al.  Functionally graded material: an overview , 2012, WCE 2012.

[95]  I. Andrianov,et al.  Homogenization of a 1D nonlinear dynamical problem for periodic composites , 2011 .

[96]  M. Braun,et al.  Nonlinear Waves in Nonlocal Media , 1998 .

[97]  G. Maugin Solitons in elastic solids (1938–2010) , 2011 .

[98]  K. Tamm,et al.  Dispersive waves in microstructured solids , 2013 .

[99]  G. Maugin,et al.  Two approaches to study essentially nonlinear and dispersive properties of the internal structure of materials. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[100]  Franz Ziegler,et al.  Wave propagation in periodic and disordered layered composite elastic materials , 1977 .

[101]  R. V. Craster,et al.  High-frequency homogenization for periodic media , 2010, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[102]  Jaan Janno,et al.  Waves in microstructured solids: Inverse problems , 2005 .

[103]  Deformation waves in microstructured solids and dimensionless parameters , 2013 .

[104]  P. Neff A finite-strain elastic–plastic Cosserat theory for polycrystals with grain rotations , 2006 .

[105]  Wolfgang Muschik,et al.  Thermodynamics with Internal Variables. Part I. General Concepts , 1994 .

[106]  W. Nahm,et al.  Vertex operators for non-simply-laced algebras , 1986 .

[107]  E. B. Webb,et al.  Continuum Definitions for Stress in Atomistic Simulation , 2002 .

[108]  Wei Chen,et al.  Multiscale methods for mechanical science of complex materials: Bridging from quantum to stochastic multiresolution continuum , 2010 .

[109]  Francesco dell’Isola,et al.  Linear plane wave propagation and normal transmission and reflection at discontinuity surfaces in second gradient 3D continua , 2012 .

[110]  H. Steeb,et al.  Wave propagation in periodic microstructures by homogenisation of extended continua , 2012 .

[111]  Gérard A. Maugin,et al.  Configurational Forces: Thermomechanics, Physics, Mathematics, and Numerics , 2010 .

[112]  Gérard A. Maugin,et al.  Material Inhomogeneities in Elasticity , 2020 .

[113]  M. Berezovski,et al.  Waves in microstructured solids: a unified viewpoint of modeling , 2011 .

[114]  N. Zabusky,et al.  Interaction of "Solitons" in a Collisionless Plasma and the Recurrence of Initial States , 1965 .

[115]  Gianfranco Capriz,et al.  Continua with Microstructure , 1989 .

[116]  E. Cosserat,et al.  Théorie des Corps déformables , 1909, Nature.

[117]  A. Cemal Eringen,et al.  Nonlinear theory of micro-elastic solids—II☆ , 1964 .

[118]  G. Maugin,et al.  Longitudinal strain solitary waves in presence of cubic non-linearity , 2005 .

[119]  E. Aifantis,et al.  Gradient Elasticity Theories in Statics and Dynamics - A Unification of Approaches , 2006 .

[120]  A. Metrikine On causality of the gradient elasticity models , 2006 .

[121]  A. Murdoch On Molecular Modelling and Continuum Concepts , 2010 .

[122]  A. Seeger Historical note: On the simulation of dispersive wave propagation by elasticity models , 2010 .

[123]  A. Berezovski,et al.  Internal structures and internal variables in solids , 2012 .

[124]  Charles Hellier,et al.  Handbook of Nondestructive Evaluation , 2001 .