On a build-up polynomial frame for the detection of singularities
暂无分享,去创建一个
[1] G. Szegő. Zeros of orthogonal polynomials , 1939 .
[2] C. Burrus,et al. Array Signal Processing , 1989 .
[3] Joseph D. Ward,et al. Wavelets Associated with Periodic Basis Functions , 1996 .
[4] A. Zhedanov,et al. Discrete-time Volterra chain and classical orthogonal polynomials , 1997 .
[5] Kathi Selig,et al. Interpolatory and Orthonormal Trigonometric Wavelets , 1998 .
[6] Paul L. Butzer,et al. Fourier analysis and approximation , 1971 .
[7] Luc Vinet,et al. SPECTRAL TRANSFORMATIONS, SELF-SIMILAR REDUCTIONS AND ORTHOGONAL POLYNOMIALS , 1997 .
[8] P. Heywood. Trigonometric Series , 1968, Nature.
[9] Knut S. Eckhoff. On a high order numerical method for functions with singularities , 1998, Math. Comput..
[10] Bernd Fischer,et al. Wavelets based on orthogonal polynomials , 1997, Math. Comput..
[11] Manfred Tasche,et al. On the Computation of Periodic Spline Wavelets , 1995 .
[12] Anne Gelb,et al. Enhanced spectral viscosity approximations for conservation laws , 2000 .
[13] H. Mhaskar,et al. On trigonometric wavelets , 1993 .
[14] Jürgen Prestin,et al. Orthogonal Algebraic Polynomial Schauder Bases of Optimal Degree , 1995 .
[15] H. N. Mhaskar,et al. Polynomial Frames for the Detection of Singularities , 2000 .
[16] Hwee Huat Tan,et al. Periodic Orthogonal Splines and Wavelets , 1995 .
[17] R. A. Lorentz,et al. Orthogonal Trigonometric Schauder Bases of Optimal Degree for C(K) , 1994 .
[18] Hrushikesh Narhar Mhaskar,et al. On the detection of singularities of a periodic function , 2000, Adv. Comput. Math..
[19] Knut S. Eckhoff. Accurate reconstructions of functions of finite regularity from truncated Fourier series expansions , 1995 .
[20] Manfred Tasche,et al. A Unified Approach to Periodic Wavelets , 1994 .