On a build-up polynomial frame for the detection of singularities

Let f : [−1, 1] → IR, x0 ∈ (−1, 1), r ≥ 0 be an integer. The point x0 is called a singularity of f of order r if the derivative f (r) has a jump discontinuity at x0, but is continuous at every other point of some neighborhood of x0. In this paper, we propose a sequence of polynomial operators {τj} with the following properties. Each τj is computed using the values f(cos(kπ/2 j)), k = 1, · · · , 2j − 1, and the quantity τj(f, x) is “large” near a singularity, and “small” away from it. Precise quantitative estimates are given.

[1]  G. Szegő Zeros of orthogonal polynomials , 1939 .

[2]  C. Burrus,et al.  Array Signal Processing , 1989 .

[3]  Joseph D. Ward,et al.  Wavelets Associated with Periodic Basis Functions , 1996 .

[4]  A. Zhedanov,et al.  Discrete-time Volterra chain and classical orthogonal polynomials , 1997 .

[5]  Kathi Selig,et al.  Interpolatory and Orthonormal Trigonometric Wavelets , 1998 .

[6]  Paul L. Butzer,et al.  Fourier analysis and approximation , 1971 .

[7]  Luc Vinet,et al.  SPECTRAL TRANSFORMATIONS, SELF-SIMILAR REDUCTIONS AND ORTHOGONAL POLYNOMIALS , 1997 .

[8]  P. Heywood Trigonometric Series , 1968, Nature.

[9]  Knut S. Eckhoff On a high order numerical method for functions with singularities , 1998, Math. Comput..

[10]  Bernd Fischer,et al.  Wavelets based on orthogonal polynomials , 1997, Math. Comput..

[11]  Manfred Tasche,et al.  On the Computation of Periodic Spline Wavelets , 1995 .

[12]  Anne Gelb,et al.  Enhanced spectral viscosity approximations for conservation laws , 2000 .

[13]  H. Mhaskar,et al.  On trigonometric wavelets , 1993 .

[14]  Jürgen Prestin,et al.  Orthogonal Algebraic Polynomial Schauder Bases of Optimal Degree , 1995 .

[15]  H. N. Mhaskar,et al.  Polynomial Frames for the Detection of Singularities , 2000 .

[16]  Hwee Huat Tan,et al.  Periodic Orthogonal Splines and Wavelets , 1995 .

[17]  R. A. Lorentz,et al.  Orthogonal Trigonometric Schauder Bases of Optimal Degree for C(K) , 1994 .

[18]  Hrushikesh Narhar Mhaskar,et al.  On the detection of singularities of a periodic function , 2000, Adv. Comput. Math..

[19]  Knut S. Eckhoff Accurate reconstructions of functions of finite regularity from truncated Fourier series expansions , 1995 .

[20]  Manfred Tasche,et al.  A Unified Approach to Periodic Wavelets , 1994 .