Improved Results on Geometric Hitting Set Problems

We consider the problem of computing minimum geometric hitting sets in which, given a set of geometric objects and a set of points, the goal is to compute the smallest subset of points that hit all geometric objects. The problem is known to be strongly NP-hard even for simple geometric objects like unit disks in the plane. Therefore, unless P = NP, it is not possible to get Fully Polynomial Time Approximation Algorithms (FPTAS) for such problems. We give the first PTAS for this problem when the geometric objects are half-spaces in ℝ3 and when they are an r-admissible set regions in the plane (this includes pseudo-disks as they are 2-admissible). Quite surprisingly, our algorithm is a very simple local-search algorithm which iterates over local improvements only.

[1]  Nabil H. Mustafa,et al.  Independent set of intersection graphs of convex objects in 2D , 2004, Comput. Geom..

[2]  Matthew J. Katz,et al.  Covering Points by Unit Disks of Fixed Location , 2007, ISAAC.

[3]  Michael T. Goodrich,et al.  Almost optimal set covers in finite VC-dimension , 1995, Discret. Comput. Geom..

[4]  R. Tarjan,et al.  A Separator Theorem for Planar Graphs , 1977 .

[5]  Ran Raz,et al.  A sub-constant error-probability low-degree test, and a sub-constant error-probability PCP characterization of NP , 1997, STOC '97.

[6]  David Haussler,et al.  ɛ-nets and simplex range queries , 1987, Discret. Comput. Geom..

[7]  J. Pach,et al.  Combinatorial geometry , 1995, Wiley-Interscience series in discrete mathematics and optimization.

[8]  János Pach,et al.  Combinatorial Geometry , 2012 .

[9]  Kenneth L. Clarkson,et al.  Improved Approximation Algorithms for Geometric Set Cover , 2007, Discret. Comput. Geom..

[10]  Nabil H. Mustafa,et al.  PTAS for geometric hitting set problems via local search , 2009, SCG '09.

[11]  Thomas Erlebach,et al.  Constant-Factor Approximation for Minimum-Weight (Connected) Dominating Sets in Unit Disk Graphs , 2006, APPROX-RANDOM.

[12]  Kasturi R. Varadarajan Weighted geometric set cover via quasi-uniform sampling , 2010, STOC '10.

[13]  Raymond E. Miller,et al.  Complexity of Computer Computations , 1972 .

[14]  Saurabh Ray,et al.  New existence proofs ε-nets , 2008, SCG '08.

[15]  Gary L. Miller,et al.  A linear work, O(n1/6) time, parallel algorithm for solving planar Laplacians , 2007, SODA '07.

[16]  Petr Vojtechovský,et al.  An Improved Approximation Factor For The Unit Disk Covering Problem , 2006, CCCG.

[17]  Gerhard J. Woeginger,et al.  Some new bounds for Epsilon-nets , 1990, SCG '90.

[18]  Jiri Matousek,et al.  Lectures on discrete geometry , 2002, Graduate texts in mathematics.

[19]  David Haussler,et al.  Epsilon-nets and simplex range queries , 1986, SCG '86.

[20]  Wolfgang Maass,et al.  Fast Approximation Algorithms for a Nonconvex Covering Problem , 1987, J. Algorithms.

[21]  Kamesh Munagala,et al.  Local search heuristic for k-median and facility location problems , 2001, STOC '01.

[22]  Dror Rawitz,et al.  Hitting sets when the VC-dimension is small , 2005, Inf. Process. Lett..

[23]  Timothy M. Chan,et al.  Approximation Algorithms for Maximum Independent Set of Pseudo-Disks , 2009, Discrete & Computational Geometry.

[24]  Ion I. Mandoiu,et al.  Selecting Forwarding Neighbors in Wireless Ad Hoc Networks , 2001, DIALM '01.

[25]  David M. Mount,et al.  A local search approximation algorithm for k-means clustering , 2002, SCG '02.

[26]  Jirí Matousek,et al.  How to net a lot with little: small ε-nets for disks and halfspaces , 1990, SCG '90.

[27]  Greg N. Frederickson,et al.  Fast Algorithms for Shortest Paths in Planar Graphs, with Applications , 1987, SIAM J. Comput..

[28]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .