Public-key cryptosystem based on invariants of diagonalizable groups

Abstract We develop a public-key cryptosystem based on invariants of diagonalizable groups and investigate properties of such a cryptosystem first over finite fields, then over number fields and finally over finite rings. We consider the security of these cryptosystem and show that it is necessary to restrict the set of parameters of the system to prevent various attacks (including linear algebra attacks and attacks based on the Euclidean algorithm).

[1]  Salil P. Vadhan,et al.  Computational Complexity , 2005, Encyclopedia of Cryptography and Security.

[2]  E. Noether,et al.  Der Endlichkeitssatz der Invarianten endlicher Gruppen , 1915 .

[3]  Gérard Cornuéjols,et al.  Integer programming , 2014, Math. Program..

[4]  P. Gallagher Invariants for finite groups , 1979 .

[5]  P. Symonds On the Castelnuovo-Mumford regularity of rings of polynomial invariants , 2011 .

[6]  Henri Cohen,et al.  A course in computational algebraic number theory , 1993, Graduate texts in mathematics.

[7]  Dima Grigoriev,et al.  Public-key cryptography and invariant theory , 2002, Electron. Colloquium Comput. Complex..

[8]  László Babai,et al.  Graph isomorphism in quasipolynomial time [extended abstract] , 2015, STOC.

[9]  Johannes A. Buchmann,et al.  On some computational problems in finite abelian groups , 1997, Math. Comput..

[10]  D. Grigoriev,et al.  Algebraic cryptography: New constructions and their security against provable break , 2009 .

[11]  Štefan Porubský,et al.  Fermat–Euler Theorem in Algebraic Number Fields , 1996 .

[12]  Melvin Hochster,et al.  Rings of invariants of reductive groups acting on regular rings are Cohen-Macaulay , 1974 .

[13]  W. C. Huffman Polynomial Invariants of Finite Linear Groups of Degree Two , 1980, Canadian Journal of Mathematics.

[14]  Andrew V. Sutherland Structure computation and discrete logarithms in finite abelian p-groups , 2008, Math. Comput..

[15]  Norikata Nakagoshi The structure of the multiplicative group of residue classes modulo ${\germ p}^{N+1}$ , 1979 .

[16]  Stephen Smale,et al.  Computational Complexity: On the Geometry of Polynomials and a Theory of Cost: II , 1986, SIAM J. Comput..

[17]  Minimal degrees of invariants of (super)groups – a connection to cryptology , 2016, 1608.01551.

[18]  O. N. Vasilenko Number-theoretic Algorithms in Cryptography (Translations of Mathematical Monographs) , 2006 .

[19]  O. N. Vasilenko Number-theoretic algorithms in cryptography , 2006 .

[20]  Harm Derksen,et al.  Constructive invariant theory , 1997 .

[21]  J. Humphreys,et al.  Linear Algebraic Groups , 1975 .

[22]  Gudmund Skovbjerg Frandsen,et al.  Binary GCD Like Algorithms for Some Complex Quadratic Rings , 2004, ANTS.

[23]  Helmut Hasse,et al.  Number Theory , 2020, An Introduction to Probabilistic Number Theory.

[24]  Victor Y. Pan,et al.  Solving a Polynomial Equation: Some History and Recent Progress , 1997, SIAM Rev..

[25]  Larry Smith,et al.  Polynomial invariants of finite groups. A survey of recent developments , 1997 .

[26]  W. Waterhouse,et al.  Introduction to Affine Group Schemes , 1979 .

[27]  S. Smale,et al.  Computational complexity: on the geometry of polynomials and a theory of cost. I , 1985 .

[28]  Erich Kaltofen,et al.  Computing greatest common divisors and factorizations in quadratic number fields , 1989 .

[29]  T. Elgamal A public key cryptosystem and a signature scheme based on discrete logarithms , 1984, CRYPTO 1984.

[30]  Taher El Gamal A public key cryptosystem and a signature scheme based on discrete logarithms , 1984, IEEE Trans. Inf. Theory.

[31]  A. Zubkov,et al.  Solvability and nilpotency for algebraic supergroups , 2015, 1502.07021.

[32]  B. R. McDonald Finite Rings With Identity , 1974 .