Chemical Subdiffusivity of Critical 2D Percolation

We show that random walk on the incipient infinite cluster (IIC) of two-dimensional critical percolation is subdiffusive in the chemical distance (i.e., in the intrinsic graph metric). Kesten (Probab Theory Related Fields 73(3): 369–394 1986) famously showed that this is true for the Euclidean distance, but it is known that the chemical distance is typically asymptotically larger. More generally, we show that subdiffusivity in the chemical distance holds for stationary random graphs of polynomial volume growth, as long as there is a multiscale way of covering the graph so that “deep patches” have “thin backbones.” Our estimates are quantitative and give explicit bounds in terms of the one and two-arm exponents $$\eta _2> \eta _1 > 0$$ η 2 > η 1 > 0 : For d -dimensional models, the mean chemical displacement after T steps of random walk scales asymptotically slower than $$T^{1/\beta }$$ T 1 / β , whenever $$\begin{aligned} \beta < 2 + \frac{\eta _2-\eta _1}{d-\eta _1}\,. \end{aligned}$$ β < 2 + η 2 - η 1 d - η 1 . Using the conjectured values of $$\eta _2 = \eta _1 + 1/4$$ η 2 = η 1 + 1 / 4 and $$\eta _1 = 5/48$$ η 1 = 5 / 48 for 2D lattices, the latter quantity is $$2+12/91$$ 2 + 12 / 91 .

[1]  P. Nolin,et al.  On monochromatic arm exponents for 2D critical percolation , 2009, 0906.3570.

[2]  H. Kesten,et al.  Inequalities with applications to percolation and reliability , 1985 .

[3]  Keith Ball,et al.  Markov chains, Riesz transforms and Lipschitz maps , 1992 .

[4]  M. Damron,et al.  Subdiffusivity of random walk on the 2D invasion percolation cluster , 2012, 1210.7267.

[5]  R. van der Hofstad,et al.  The Incipient Infinite Cluster for High-Dimensional Unoriented Percolation , 2004 .

[6]  H. Kesten Subdiffusive behavior of random walk on a random cluster , 1986 .

[7]  Harry Kesten,et al.  The incipient infinite cluster in two-dimensional percolation , 1986 .

[8]  I. Benjamini,et al.  Recurrence of Distributional Limits of Finite Planar Graphs , 2000, math/0011019.

[9]  Almut Burchard,et al.  Holder Regularity and Dimension Bounds for Random Curves , 1998 .

[10]  S. Havlin,et al.  Fractals and Disordered Systems , 1991 .

[11]  D. Aldous,et al.  Processes on Unimodular Random Networks , 2006, math/0603062.

[12]  Nathan Linial,et al.  Girth and Euclidean distortion , 2002 .

[13]  G. Slade,et al.  Mean-field critical behaviour for percolation in high dimensions , 1990 .

[14]  Nicolas Curien,et al.  Ergodic theory on stationary random graphs , 2010, 1011.2526.

[15]  Wendelin Werner,et al.  One-Arm Exponent for Critical 2D Percolation , 2001 .

[16]  A. Járai Incipient infinite percolation clusters in 2D , 2003 .

[17]  James R. Lee,et al.  Diffusive estimates for random walks on stationary random graphs of polynomial growth , 2016, 1609.04040.

[18]  J. Bourgain On lipschitz embedding of finite metric spaces in Hilbert space , 1985 .

[19]  Y. Peres,et al.  Markov chains in smooth Banach spaces and Gromov hyperbolic metric spaces , 2004, math/0410422.

[20]  Jian Ding,et al.  Markov type and threshold embeddings , 2012, 1208.6088.

[21]  Omer Angel,et al.  Hyperbolic and Parabolic Unimodular Random Maps , 2016, Geometric and Functional Analysis.

[22]  Gady Kozma,et al.  Disorder, entropy and harmonic functions , 2011, 1111.4853.

[23]  Tom Hutchcroft,et al.  Anomalous diffusion of random walk on random planar maps , 2018, Probability Theory and Related Fields.

[24]  Michael Aizenman,et al.  On the Number of Incipient Spanning Clusters , 1997 .

[25]  Asaf Nachmias,et al.  The Alexander-Orbach conjecture holds in high dimensions , 2008, 0806.1442.

[26]  O. Cohen Recurrence of Distributional Limits of Finite Planar Graphs , 2000 .

[27]  James R. Lee Conformal growth rates and spectral geometry on distributional limits of graphs , 2017, 1701.01598.