Combined computational and experimental approaches to understanding the Ca(2+) regulatory network in neurons.

Ca(2+) is a ubiquitous signaling ion that regulates a variety of neuronal functions by binding to and altering the state of effector proteins. Spatial relationships and temporal dynamics of Ca(2+) elevations determine many cellular responses of neurons to chemical and electrical stimulation. There is a wealth of information regarding the properties and distribution of Ca(2+) channels, pumps, exchangers, and buffers that participate in Ca(2+) regulation. At the same time, new imaging techniques permit characterization of evoked Ca(2+) signals with increasing spatial and temporal resolution. However, understanding the mechanistic link between functional properties of Ca(2+) handling proteins and the stimulus-evoked Ca(2+) signals they orchestrate requires consideration of the way Ca(2+) handling mechanisms operate together as a system in native cells. A wide array of biophysical modeling approaches is available for studying this problem and can be used in a variety of ways. Models can be useful to explain the behavior of complex systems, to evaluate the role of individual Ca(2+) handling mechanisms, to extract valuable parameters, and to generate predictions that can be validated experimentally. In this review, we discuss recent advances in understanding the underlying mechanisms of Ca(2+) signaling in neurons via mathematical modeling. We emphasize the value of developing realistic models based on experimentally validated descriptions of Ca(2+) transport and buffering that can be tested and refined through new experiments to develop increasingly accurate biophysical descriptions of Ca(2+) signaling in neurons.

[1]  E. Saftenku Computational study of non-homogeneous distribution of Ca(2+) handling systems in cerebellar granule cells. , 2009, Journal of theoretical biology.

[2]  C. Koch,et al.  Methods in Neuronal Modeling: From Ions to Networks , 1998 .

[3]  J. Keener Stochastic calcium oscillations. , 2006, Mathematical medicine and biology : a journal of the IMA.

[4]  K. Baimbridge,et al.  Calcium-binding proteins in the nervous system , 1992, Trends in Neurosciences.

[5]  Ion I. Moraru,et al.  Morphological Control of Inositol-1,4,5-Trisphosphate–Dependent Signals , 1999, The Journal of cell biology.

[6]  Nicholas T. Carnevale,et al.  The NEURON Simulation Environment , 1997, Neural Computation.

[7]  R. Tsien,et al.  Fluorescent indicators for Ca2+based on green fluorescent proteins and calmodulin , 1997, Nature.

[8]  A. Zippelius,et al.  Heterogeneous presynaptic release probabilities: functional relevance for short-term plasticity. , 2003, Biophysical journal.

[9]  E. Saftenku Models of Calcium Dynamics in Cerebellar Granule Cells , 2012, The Cerebellum.

[10]  R. Zucker,et al.  Presynaptic calcium diffusion and the time courses of transmitter release and synaptic facilitation at the squid giant synapse , 1983, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[11]  F. Sala,et al.  Calcium diffusion modeling in a spherical neuron. Relevance of buffering properties. , 1990, Biophysical journal.

[12]  J. Keizer,et al.  Model of beta-cell mitochondrial calcium handling and electrical activity. II. Mitochondrial variables. , 1998, The American journal of physiology.

[13]  G. Augustine,et al.  Local Calcium Signaling in Neurons , 2003, Neuron.

[14]  J I Gold,et al.  A model of dendritic spine Ca2+ concentration exploring possible bases for a sliding synaptic modification threshold. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[15]  B. Sakmann,et al.  Calcium Secretion Coupling at Calyx of Held Governed by Nonuniform Channel–Vesicle Topography , 2002, The Journal of Neuroscience.

[16]  R. Bertram,et al.  Residual bound Ca2+ can account for the effects of Ca2+ buffers on synaptic facilitation. , 2006, Journal of neurophysiology.

[17]  W. M. Roberts,et al.  Calretinin modifies presynaptic calcium signaling in frog saccular hair cells , 2000, Nature Neuroscience.

[18]  J L Thompson,et al.  Control of calcium oscillations by membrane fluxes. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[19]  I. Módy,et al.  Resolving the Fast Kinetics of Cooperative Binding: Ca2+ Buffering by Calretinin , 2007, PLoS biology.

[20]  J. Keizer,et al.  Minimal model of beta-cell mitochondrial Ca2+ handling. , 1997, The American journal of physiology.

[21]  M. Stern,et al.  Buffering of calcium in the vicinity of a channel pore. , 1992, Cell calcium.

[22]  R S Zucker,et al.  Presynaptic calcium diffusion from various arrays of single channels. Implications for transmitter release and synaptic facilitation. , 1985, Biophysical journal.

[23]  P. Smolen,et al.  Calcium dynamics in large neuronal models , 1998 .

[24]  I. Módy,et al.  Binding kinetics of calbindin-D(28k) determined by flash photolysis of caged Ca(2+) , 2000, Biophysical journal.

[25]  R. Tsien,et al.  Voltage-gated calcium channels, calcium signaling, and channelopathies , 2007 .

[26]  V. Shahrezaei,et al.  Consequences of molecular-level Ca2+ channel and synaptic vesicle colocalization for the Ca2+ microdomain and neurotransmitter exocytosis: a monte carlo study. , 2004, Biophysical journal.

[27]  T. Mazel,et al.  Reaction diffusion modeling of calcium dynamics with realistic ER geometry. , 2006, Biophysical journal.

[28]  Jen-Wei Lin,et al.  Probing the endogenous Ca2+ buffers at the presynaptic terminals of the crayfish neuromuscular junction. , 2005, Journal of neurophysiology.

[29]  Upinder S. Bhalla,et al.  Adaptive stochastic-deterministic chemical kinetic simulations , 2004, Bioinform..

[30]  E. Neher,et al.  Linearized Buffered Ca2+ Diffusion in Microdomains and Its Implications for Calculation of [Ca2+] at the Mouth of a Calcium Channel , 1997, The Journal of Neuroscience.

[31]  Erik De Schutter,et al.  Frontiers in Computational Neuroscience Calcium, Synaptic Plasticity and Intrinsic Homeostasis in Purkinje Neuron Models Materials and Methods Original Pc Model , 2022 .

[32]  L. Loew,et al.  An image-based model of calcium waves in differentiated neuroblastoma cells. , 2000, Biophysical journal.

[33]  Benjamin F. Grewe,et al.  High-speed in vivo calcium imaging reveals neuronal network activity with near-millisecond precision , 2010, Nature Methods.

[34]  D. DiGregorio,et al.  Measurement of Action Potential-Induced Presynaptic Calcium Domains at a Cultured Neuromuscular Junction , 1999, The Journal of Neuroscience.

[35]  Pawel Swietach,et al.  Modeling calcium waves in cardiac myocytes: importance of calcium diffusion. , 2010, Frontiers in Bioscience.

[36]  F. Lu,et al.  Modes of propagation of Ca(2+)-induced Ca2+ release in bullfrog sympathetic ganglion cells. , 2000, Cell Calcium.

[37]  D. Friel,et al.  Depolarization-induced Calcium Responses in Sympathetic Neurons: Relative Contributions from Ca2+ Entry, Extrusion, ER/Mitochondrial Ca2+ Uptake and Release, and Ca2+ Buffering , 2007, The Journal of general physiology.

[38]  J. Putney,et al.  Store-operated calcium channels. , 2005, Physiological reviews.

[39]  J. Hall,et al.  Endogenous buffers limit the spread of free calcium in hair cells. , 1997, Biophysical journal.

[40]  Benjamin F. Grewe,et al.  Optical probing of neuronal ensemble activity , 2009, Current Opinion in Neurobiology.

[41]  R. Winslow,et al.  Cardiac Ca2+ dynamics: the roles of ryanodine receptor adaptation and sarcoplasmic reticulum load. , 1998, Biophysical journal.

[42]  B. Sabatini,et al.  Calcium Signaling in Dendrites and Spines: Practical and Functional Considerations , 2008, Neuron.

[43]  H. Beck,et al.  Nanodomains of Single Ca2+ Channels Contribute to Action Potential Repolarization in Cortical Neurons , 2007, The Journal of Neuroscience.

[44]  Dmitry V. Samigullin,et al.  Modeling of quantal neurotransmitter release kinetics in the presence of fixed and mobile calcium buffers , 2008, Journal of Computational Neuroscience.

[45]  K Kuba,et al.  Simulation of intracellular Ca2+ oscillation in a sympathetic neurone. , 1981, Journal of theoretical biology.

[46]  R S Zucker,et al.  Effects of mobile buffers on facilitation: experimental and computational studies. , 2000, Biophysical journal.

[47]  S Coombes,et al.  A bidomain threshold model of propagating calcium waves , 2008, Journal of mathematical biology.

[48]  Michael L. Hines,et al.  NeuroML: A Language for Describing Data Driven Models of Neurons and Networks with a High Degree of Biological Detail , 2010, PLoS Comput. Biol..

[49]  H. Chiel,et al.  Calcium dynamics: analyzing the Ca2+ regulatory network in intact cells , 2008, Trends in Neurosciences.

[50]  R. Llinás,et al.  Compartmentalization of the submembrane calcium activity during calcium influx and its significance in transmitter release. , 1985, Biophysical journal.

[51]  G D Smith,et al.  Analytical steady-state solution to the rapid buffering approximation near an open Ca2+ channel. , 1996, Biophysical journal.

[52]  Dirk Dietrich,et al.  Endogenous Ca2+ Buffer Concentration and Ca2+ Microdomains in Hippocampal Neurons , 2005, The Journal of Neuroscience.

[53]  Marco Canepari,et al.  Dendritic Spike Saturation of Endogenous Calcium Buffer and Induction of Postsynaptic Cerebellar LTP , 2008, PloS one.

[54]  J. Keizer,et al.  Validity of the rapid buffering approximation near a point source of calcium ions. , 1996, Biophysical journal.

[55]  W. Gibson,et al.  The probability of quantal secretion within an array of calcium channels of an active zone. , 2000, Biophysical journal.

[56]  T. Kosaka,et al.  Axons and axon terminals of cerebellar Purkinje cells and basket cells have higher levels of parvalbumin immunoreactivity than somata and dendrites: quantitative analysis by immunogold labeling , 2004, Experimental Brain Research.

[57]  Geneviève Dupont,et al.  Stochastic aspects of oscillatory Ca2+ dynamics in hepatocytes. , 2008, Biophysical journal.

[58]  Sreekanth H. Chalasani,et al.  Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators , 2009, Nature Methods.

[59]  Hartmut Schmidt,et al.  Spine neck geometry determines spino-dendritic cross-talk in the presence of mobile endogenous calcium binding proteins , 2009, Journal of Computational Neuroscience.

[60]  Bernardo L. Sabatini,et al.  Supraresolution Imaging in Brain Slices using Stimulated-Emission Depletion Two-Photon Laser Scanning Microscopy , 2009, Neuron.

[61]  Rafael Yuste,et al.  Calcium Microdomains in Aspiny Dendrites , 2003, Neuron.

[62]  J C Schaff,et al.  Virtual Cell modelling and simulation software environment. , 2008, IET systems biology.

[63]  R. Leapman,et al.  Multiple Modes of Calcium-Induced Calcium Release in Sympathetic Neurons II , 2001, The Journal of general physiology.

[64]  Effects of Calretinin on Ca2+ Signals in Cerebellar Granule Cells: Implications of Cooperative Ca2+ Binding , 2012, The Cerebellum.

[65]  Maria Blatow,et al.  Ca2+ Buffer Saturation Underlies Paired Pulse Facilitation in Calbindin-D28k-Containing Terminals , 2003, Neuron.

[66]  B. J. Roth,et al.  A mathematical model of agonist-induced propagation of calcium waves in astrocytes. , 1995, Cell calcium.

[67]  J. Eilers,et al.  Diffusional mobility of parvalbumin in spiny dendrites of cerebellar Purkinje neurons quantified by fluorescence recovery after photobleaching. , 2003, Biophysical journal.

[68]  David Baker,et al.  Ca2+ indicators based on computationally redesigned calmodulin-peptide pairs. , 2006, Chemistry & biology.

[69]  M Segal,et al.  Geometry of dendritic spines affects calcium dynamics in hippocampal neurons: theory and experiments. , 1999, Journal of neurophysiology.

[70]  R. Burgoyne,et al.  Neuronal calcium sensor proteins: generating diversity in neuronal Ca2+ signalling , 2007, Nature Reviews Neuroscience.

[71]  A. G. Filoteo,et al.  Plasma-membrane Ca(2+) pumps: structural diversity as the basis for functional versatility. , 2007, Biochemical Society transactions.

[72]  T. Sejnowski,et al.  Calmodulin Activation by Calcium Transients in the Postsynaptic Density of Dendritic Spines , 2008, PloS one.

[73]  L. Loew,et al.  Modeling and analysis of calcium signaling events leading to long-term depression in cerebellar Purkinje cells. , 2005, Biophysical journal.

[74]  W A Roberts Localization of calcium signals by a mobile calcium buffer in frog saccular hair cells , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[75]  B Sabatini,et al.  Evaluation of cellular mechanisms for modulation of calcium transients using a mathematical model of fura-2 Ca2+ imaging in Aplysia sensory neurons. , 1992, Biophysical journal.

[76]  Terrence J Sejnowski,et al.  Complexity of calcium signaling in synaptic spines. , 2002, BioEssays : news and reviews in molecular, cellular and developmental biology.

[77]  D. Friel,et al.  Multiple Modes of Calcium-Induced Calcium Release in Sympathetic Neurons I , 2001, The Journal of general physiology.

[78]  Hartmut Schmidt,et al.  Spino‐dendritic cross‐talk in rodent Purkinje neurons mediated by endogenous Ca2+‐binding proteins , 2007, The Journal of physiology.

[79]  Ariel L. Escobar,et al.  Ca2+-induced Ca2+ Release Phenomena in Mammalian Sympathetic Neurons Are Critically Dependent on the Rate of Rise of Trigger Ca2+ , 1997, The Journal of general physiology.

[80]  M. Sanderson,et al.  Mechanisms of calcium oscillations and waves: a quantitative analysis , 1995, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[81]  Martin Falcke,et al.  Calcium Signals Driven by Single Channel Noise , 2010, PLoS Comput. Biol..

[82]  E Neher,et al.  Kinetic studies of Ca2+ binding and Ca2+ clearance in the cytosol of adrenal chromaffin cells. , 1997, Biophysical journal.

[83]  Martin Falcke,et al.  Modeling the dependence of the period of intracellular Ca2+ waves on SERCA expression. , 2003, Biophysical journal.

[84]  Bernardo L Sabatini,et al.  Synapse-specific plasticity and compartmentalized signaling in cerebellar stellate cells , 2006, Nature Neuroscience.

[85]  James Sneyd,et al.  A buffering SERCA pump in models of calcium dynamics. , 2006, Biophysical journal.

[86]  M. Kawato,et al.  Inositol 1,4,5-Trisphosphate-Dependent Ca2+ Threshold Dynamics Detect Spike Timing in Cerebellar Purkinje Cells , 2005, The Journal of Neuroscience.

[87]  Eshel Ben-Jacob,et al.  Nonlinear Gap Junctions Enable Long-Distance Propagation of Pulsating Calcium Waves in Astrocyte Networks , 2010, PLoS Comput. Biol..

[88]  Hartmut Schmidt,et al.  Mutational analysis of dendritic Ca2+ kinetics in rodent Purkinje cells: role of parvalbumin and calbindin D28k , 2003, The Journal of physiology.

[89]  Tullio Pozzan,et al.  Microdomains of intracellular Ca2+: molecular determinants and functional consequences. , 2006, Physiological reviews.

[90]  M. Falcke Introduction to focus issue: intracellular Ca2+ dynamics--a change of modeling paradigm? , 2009, Chaos.

[91]  P P Mitra,et al.  Analytical calculation of intracellular calcium wave characteristics. , 1997, Biophysical journal.

[92]  A. Atri,et al.  A single-pool model for intracellular calcium oscillations and waves in the Xenopus laevis oocyte. , 1993, Biophysical journal.

[93]  D Holcman,et al.  Calcium dynamics in dendritic spines and spine motility. , 2004, Biophysical journal.

[94]  Damian J. Wallace,et al.  Single-spike detection in vitro and in vivo with a genetic Ca2+ sensor , 2008, Nature Methods.

[95]  Joel R. Stiles,et al.  Monte Carlo simulation of neuro-transmitter release using MCell, a general simulator of cellular physiological processes , 1998 .

[96]  D. Friel,et al.  Differential Regulation of ER Ca2+ Uptake and Release Rates Accounts for Multiple Modes of Ca2+-induced Ca2+ Release , 2002, The Journal of general physiology.

[97]  Shin Ishii,et al.  Local signaling with molecular diffusion as a decoder of Ca2+ signals in synaptic plasticity , 2005, Molecular Systems Biology.

[98]  Micha E. Spira,et al.  Low Mobility of the Ca2+ Buffers in Axons of Cultured Aplysia Neurons , 1997, Neuron.

[99]  R. Winslow,et al.  An integrated model of cardiac mitochondrial energy metabolism and calcium dynamics. , 2003, Biophysical journal.

[100]  M. W. Marshall,et al.  Sarcoplasmic reticulum calcium release in frog skeletal muscle fibres estimated from Arsenazo III calcium transients. , 1983, The Journal of physiology.

[101]  Donald M Bers,et al.  A mathematical treatment of integrated Ca dynamics within the ventricular myocyte. , 2004, Biophysical journal.

[102]  W. N. Ross,et al.  Synaptic Activation and Membrane Potential Changes Modulate the Frequency of Spontaneous Elementary Ca2+ Release Events in the Dendrites of Pyramidal Neurons , 2009, The Journal of Neuroscience.

[103]  Rafael Yuste,et al.  Calcium Dynamics of Spines Depend on Their Dendritic Location , 2002, Neuron.

[104]  James C. Schaff,et al.  The Virtual Cell , 1998, Pacific Symposium on Biocomputing.

[105]  L M Loew,et al.  A general computational framework for modeling cellular structure and function. , 1997, Biophysical journal.

[106]  A Goldbeter,et al.  Minimal model for signal-induced Ca2+ oscillations and for their frequency encoding through protein phosphorylation. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[107]  P. Saggau,et al.  Presynaptic calcium dynamics and transmitter release evoked by single action potentials at mammalian central synapses. , 1997, Biophysical journal.

[108]  J. Eilers,et al.  Diffusion and Extrusion Shape Standing Calcium Gradients During Ongoing Parallel Fiber Activity in Dendrites of Purkinje Neurons , 2012, The Cerebellum.

[109]  R. Fettiplace,et al.  A theoretical study of calcium microdomains in turtle hair cells. , 1996, Biophysical journal.

[110]  J. Keizer,et al.  Model of β-cell mitochondrial calcium handling and electrical activity. I. Cytoplasmic variables. , 1998, American journal of physiology. Cell physiology.

[111]  Michael Z. Lin,et al.  Toward the Second Generation of Optogenetic Tools , 2010, The Journal of Neuroscience.

[112]  P. Erne,et al.  Calcium and magnesium binding to rat parvalbumin. , 1994, European journal of biochemistry.

[113]  Adam Kapela,et al.  A mathematical model of vasoreactivity in rat mesenteric arterioles. II. Conducted vasoreactivity. , 2010, American journal of physiology. Heart and circulatory physiology.

[114]  J. Eilers,et al.  Calbindin D28k targets myo-inositol monophosphatase in spines and dendrites of cerebellar Purkinje neurons. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[115]  A. Verkhratsky,et al.  Calcium signalling: past, present and future. , 2005, Cell calcium.

[116]  J Rinzel,et al.  Spontaneous electrical and calcium oscillations in unstimulated pituitary gonadotrophs. , 1995, Biophysical journal.

[117]  V. Shahrezaei,et al.  Ca2+ from One or Two Channels Controls Fusion of a Single Vesicle at the Frog Neuromuscular Junction , 2006, The Journal of Neuroscience.

[118]  D. Rusakov,et al.  Modulation of Presynaptic Ca2+ Entry by AMPA Receptors at Individual GABAergic Synapses in the Cerebellum , 2005, The Journal of Neuroscience.

[119]  Ramón Huerta,et al.  Regularization mechanisms of spiking-bursting neurons , 2001, Neural Networks.

[120]  S. Bolsover,et al.  Calcium signal transmission in chick sensory neurones is diffusion based. , 2008, Cell calcium.

[121]  S. Coombes,et al.  Sparks and waves in a stochastic fire-diffuse-fire model of Ca2+ release. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[122]  J L van Hemmen,et al.  Intracellular Ca2+ stores can account for the time course of LTP induction: a model of Ca2+ dynamics in dendritic spines. , 1995, Journal of neurophysiology.

[123]  V. Shahrezaei,et al.  Brevity of the Ca2+ microdomain and active zone geometry prevent Ca2+-sensor saturation for neurotransmitter release. , 2005, Journal of neurophysiology.

[124]  A. Hodgkin,et al.  The effect of cyanide on the efflux of calcium from squid axons , 1969, The Journal of physiology.

[125]  Carlotta Giorgi,et al.  Ca(2+) transfer from the ER to mitochondria: when, how and why. , 2009, Biochimica et biophysica acta.

[126]  M. Larkum,et al.  Frontiers in Neural Circuits Neural Circuits Methods Article , 2022 .

[127]  R. Bertram,et al.  Ca2+ Current versus Ca2+ Channel Cooperativity of Exocytosis , 2009, The Journal of Neuroscience.

[128]  T. Sejnowski,et al.  A comparison of deterministic and stochastic simulations of neuronal vesicle release models , 2010, Physical biology.

[129]  W. Gibson,et al.  The probability of quantal secretion near a single calcium channel of an active zone. , 2000, Biophysical journal.

[130]  M. Frotscher,et al.  Nanodomain Coupling between Ca2+ Channels and Ca2+ Sensors Promotes Fast and Efficient Transmitter Release at a Cortical GABAergic Synapse , 2008, Neuron.

[131]  H G Othmer,et al.  A model of calcium dynamics in cardiac myocytes based on the kinetics of ryanodine-sensitive calcium channels. , 1994, Biophysical journal.

[132]  R. Zucker,et al.  Facilitation through buffer saturation: constraints on endogenous buffering properties. , 2004, Biophysical journal.

[133]  James M. Bower,et al.  The Book of GENESIS , 1994, Springer New York.

[134]  Arthur Sherman,et al.  New and corrected simulations of synaptic facilitation. , 2002, Biophysical journal.

[135]  H. Othmer,et al.  Spatiotemporal characteristics of calcium dynamics in astrocytes. , 2009, Chaos.

[136]  P. Saggau,et al.  Random-access Multiphoton (ramp) Microscopy Fast Functional Imaging of Single Neurons Using , 2005 .

[137]  J. Keizer,et al.  Mitochondrial modulation of intracellular Ca(2+) signaling. , 2001, Journal of theoretical biology.

[138]  Terrence J. Sejnowski,et al.  Modelling Vesicular Release at Hippocampal Synapses , 2010, PLoS Comput. Biol..

[139]  W. Melzer,et al.  Voltage-dependent Ca2+ Fluxes in Skeletal Myotubes Determined Using a Removal Model Analysis , 2004, The Journal of general physiology.

[140]  J. Rinzel,et al.  Equations for InsP3 receptor-mediated [Ca2+]i oscillations derived from a detailed kinetic model: a Hodgkin-Huxley like formalism. , 1994, Journal of theoretical biology.

[141]  M. Pinter,et al.  Time courses of calcium and calcium-bound buffers following calcium influx in a model cell. , 1993, Biophysical journal.

[142]  J. Keizer,et al.  Ryanodine receptor adaptation and Ca2+(-)induced Ca2+ release-dependent Ca2+ oscillations. , 1996, Biophysical journal.

[143]  Robert M. Miura,et al.  Asymptotic Analysis of Buffered Calcium Diffusion near a Point Source , 2001, SIAM J. Appl. Math..

[144]  Henry Markram,et al.  Competitive Calcium Binding: Implications for Dendritic Calcium Signaling , 1998, Journal of Computational Neuroscience.

[145]  Baker Pf,et al.  Depolarization and calcium entry in squid giant axons. , 1971 .

[146]  Eric L. Schwartz,et al.  Computational Neuroscience , 1993, Neuromethods.

[147]  E. Neher,et al.  Concentration profiles of intracellular calcium in the presence of a diffusible chelator. , 1986 .

[148]  W. Gibson,et al.  The facilitated probability of quantal secretion within an array of calcium channels of an active zone at the amphibian neuromuscular junction. , 2004, Biophysical journal.

[149]  D. Friel,et al.  [Ca2+]i oscillations in sympathetic neurons: an experimental test of a theoretical model. , 1995, Biophysical journal.

[150]  William M. Roberts,et al.  Spatial calcium buffering in saccular hair cells , 1993, Nature.

[151]  W. Yamada,et al.  Time course of transmitter release calculated from simulations of a calcium diffusion model. , 1992, Biophysical journal.

[152]  Beat Schwaller,et al.  Cytosolic Ca2+ buffers. , 2010, Cold Spring Harbor perspectives in biology.

[153]  C. Govind,et al.  Synaptic structural complexity as a factor enhancing probability of calcium-mediated transmitter release. , 1996, Journal of neurophysiology.

[154]  S. Mironov,et al.  Approximate analytical time-dependent solutions to describe large-amplitude local calcium transients in the presence of buffers. , 2008, Biophysical journal.

[155]  J. Keizer,et al.  Two roles of Ca2+ in agonist stimulated Ca2+ oscillations. , 1992, Biophysical journal.

[156]  Sungho Hong,et al.  Controlling Ca2+-Activated K+ Channels with Models of Ca2+ Buffering in Purkinje Cells , 2010, The Cerebellum.

[157]  A Goldbeter,et al.  One-pool model for Ca2+ oscillations involving Ca2+ and inositol 1,4,5-trisphosphate as co-agonists for Ca2+ release. , 1993, Cell calcium.

[158]  Martin Falcke,et al.  How does intracellular Ca2+ oscillate: by chance or by the clock? , 2008, Biophysical journal.

[159]  Pranay Goel,et al.  Modelling calcium microdomains using homogenisation. , 2007, Journal of theoretical biology.

[160]  J. R. Monck,et al.  Development and dissipation of Ca(2+) gradients in adrenal chromaffin cells. , 2000, Biophysical journal.

[161]  W. Levy,et al.  Insights into associative long-term potentiation from computational models of NMDA receptor-mediated calcium influx and intracellular calcium concentration changes. , 1990, Journal of neurophysiology.

[162]  E. Ríos,et al.  A general procedure for determining the rate of calcium release from the sarcoplasmic reticulum in skeletal muscle fibers. , 1987, Biophysical journal.

[163]  T. H. Brown,et al.  Biophysical model of a Hebbian synapse. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[164]  J. Keizer,et al.  Effects of rapid buffers on Ca2+ diffusion and Ca2+ oscillations. , 1994, Biophysical journal.

[165]  Amparo Gil,et al.  Modeling study of exocytosis in neuroendocrine cells: influence of the geometrical parameters. , 2000, Biophysical journal.

[166]  Allen I. Selverston,et al.  Modeling observed chaotic oscillations in bursting neurons: the role of calcium dynamics and IP3 , 2000, Biological Cybernetics.

[167]  B. Fakler,et al.  Control of KCa Channels by Calcium Nano/Microdomains , 2008, Neuron.

[168]  R. Zucker,et al.  Aequorin response facilitation and intracellular calcium accumulation in molluscan neurones , 1980, The Journal of physiology.

[169]  D. Friel,et al.  Dissection of Mitochondrial Ca2+ Uptake and Release Fluxes in Situ after Depolarization-Evoked [Ca2+]i Elevations in Sympathetic Neurons , 2000, The Journal of general physiology.

[170]  M. Bootman,et al.  An update on nuclear calcium signalling , 2009, Journal of Cell Science.

[171]  B. Sakmann,et al.  Local routes revisited: the space and time dependence of the Ca2+ signal for phasic transmitter release at the rat calyx of Held. , 2003, The Journal of physiology.

[172]  W. Huisinga,et al.  Hybrid stochastic and deterministic simulations of calcium blips. , 2007, Biophysical journal.

[173]  Amparo Gil,et al.  Monte Carlo Simulation of 3-D Buffered Ca2+ Diffusions in Neuroendocrine Cells , 2000 .

[174]  E. Ríos,et al.  Measurement and modification of free calcium transients in frog skeletal muscle fibres by a metallochromic indicator dye. , 1983, The Journal of physiology.

[175]  J. Keizer,et al.  A single-pool inositol 1,4,5-trisphosphate-receptor-based model for agonist-stimulated oscillations in Ca2+ concentration. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[176]  W. Wier,et al.  Flux of Ca2+ across the sarcoplasmic reticulum of guinea‐pig cardiac cells during excitation‐contraction coupling. , 1991, The Journal of physiology.

[177]  M S Jafri,et al.  A theoretical study of cytosolic calcium waves in Xenopus oocytes. , 1995, Journal of theoretical biology.

[178]  Yasushi Miyashita,et al.  Supralinear Ca2+ Signaling by Cooperative and Mobile Ca2+ Buffering in Purkinje Neurons , 1999, Neuron.

[179]  Virginia González-Vélez,et al.  Exocytotic dynamics and calcium cooperativity effects in the calyx of Held synapse: a modelling study , 2010, Journal of Computational Neuroscience.

[180]  M. Bortolozzi,et al.  Calcium microdomains at presynaptic active zones of vertebrate hair cells unmasked by stochastic deconvolution. , 2008, Cell calcium.

[181]  Tobias Moser,et al.  Mechanisms contributing to synaptic Ca2+ signals and their heterogeneity in hair cells , 2009, Proceedings of the National Academy of Sciences.

[182]  E. Neher,et al.  Modeling buffered Ca2+ diffusion near the membrane: implications for secretion in neuroendocrine cells. , 1997, Biophysical journal.

[183]  R. Yuste,et al.  High Speed Two-Photon Imaging of Calcium Dynamics in Dendritic Spines: Consequences for Spine Calcium Kinetics and Buffer Capacity , 2007, PLoS ONE.

[184]  Alexander Borst,et al.  Fluorescence Changes of Genetic Calcium Indicators and OGB-1 Correlated with Neural Activity and Calcium In Vivo and In Vitro , 2008, The Journal of Neuroscience.

[185]  S. McDonough,et al.  Origin Sites of Calcium Release and Calcium Oscillations in Frog Sympathetic Neurons , 2000, The Journal of Neuroscience.