High-order accurate methods in time-domain computational electromagnetics: A review

Publisher Summary This chapter reviews the Maxwell's equations in the time domain and discusses boundary conditions, various simplifications, and standard normalizations. The chapter provides an overview of the classical phase-error analysis as a way of motivating the need to consider high-order accurate methods in time-domain electromagnetics, particularly as problems increase in size and complexity. The extensions of the Yee scheme and other more complex finite difference schemes are discussed. Higher-order schemes allow a significant reduction of the degrees of freedom with accuracy. For some applications it may be natural to consider the ultimate limit, leading to global or spectral methods. The chapter discusses the elements of spectral multidomain methods, which combine the accuracy of global methods with the geometric flexibility of a multielement formulation. The recent efforts on the development of high-order finite volume methods for the solution of Maxwell's equations are reviewed. The issues related to high-order time stepping and discrete stability are also discussed.

[1]  Qing Huo Liu,et al.  The PSTD algorithm: A time-domain method requiring only two cells per wavelength , 1997 .

[2]  J. S. Shang,et al.  High-Order Compact-Difference Schemes for Time-Dependent Maxwell Equations , 1999 .

[3]  Allen Taflove,et al.  Finite-difference time-domain modeling of curved surfaces (EM scattering) , 1992 .

[4]  T. A. Zang,et al.  Spectral Methods for Partial Differential Equations , 1984 .

[5]  Datta V. Gaitonde,et al.  Characteristic-based, time-dependent Maxwell equation solvers on a general curvilinear frame , 1995 .

[6]  Petr Čársky,et al.  Efficient evaluation of the matrix elements of the Coulomb potential between plane waves and Gaussians , 2002 .

[7]  Dispersion-relation-preserving (DRP) 2-D finite-difference time-domain schemes , 2002, IEEE Antennas and Propagation Society International Symposium (IEEE Cat. No.02CH37313).

[8]  Eli Turkel,et al.  Fourth order compact implicit method for the Maxwell equations with discontinuous coefficients , 2000 .

[9]  Bengt Fornberg,et al.  A practical guide to pseudospectral methods: Introduction , 1996 .

[10]  J. Bérenger Three-Dimensional Perfectly Matched Layer for the Absorption of Electromagnetic Waves , 1996 .

[11]  J. Nédélec Mixed finite elements in ℝ3 , 1980 .

[12]  C. Balanis,et al.  Higher-order finite-difference schemes for electromagnetic radiation, scattering, and penetration .2. Applications , 2002 .

[13]  Chi Hou Chan,et al.  An explicit fourth-order orthogonal curvilinear staggered-grid FDTD method for Maxwell's equations , 2002 .

[14]  D. Gottlieb,et al.  Time-stable boundary conditions for finite-difference schemes solving hyperbolic systems: methodology and application to high-order compact schemes , 1994 .

[15]  J. Nédélec A new family of mixed finite elements in ℝ3 , 1986 .

[16]  Arje Nachman A Brief Perspective on Computational Electromagnetics , 1996 .

[17]  Q.H. Liu,et al.  The 3-D multidomain pseudospectral time-domain method for wideband simulation , 2003, IEEE Microwave and Wireless Components Letters.

[18]  Datta V. Gaitonde,et al.  On high resolution schemes for time-dependent Maxwell equations , 1996 .

[19]  K. S. Yee,et al.  Conformal finite-different time-domain (FDTD) with overlapping grids , 1992 .

[20]  P. Olsson Summation by parts, projections, and stability. II , 1995 .

[21]  Tobin A. Driscoll,et al.  Block Pseudospectral Methods for Maxwell's Equations II: Two-Dimensional, Discontinuous-Coefficient Case , 1999, SIAM J. Sci. Comput..

[22]  A. Bossavit A rationale for 'edge-elements' in 3-D fields computations , 1988 .

[23]  Jan S. Hesthaven,et al.  Regular Article: Spectral Collocation Time-Domain Modeling of Diffractive Optical Elements , 1999 .

[24]  Ivo Babuška,et al.  The optimal symmetrical points for polynomial interpolation of real functions in the tetrahedron , 1995 .

[25]  Jan S. Hesthaven,et al.  Spectral Simulations of Electromagnetic Wave Scattering , 1997 .

[26]  R. A. Nicolaides,et al.  Spurious fields in time-domain computations of scattering problems , 1997 .

[27]  M. Carpenter,et al.  Fourth-order 2N-storage Runge-Kutta schemes , 1994 .

[28]  Eli Turkel,et al.  Mappings and accuracy for Chebyshev pseudo-spectral approximations , 1992 .

[29]  W. J. Gordon,et al.  Transfinite element methods: Blending-function interpolation over arbitrary curved element domains , 1973 .

[30]  Jan S. Hesthaven,et al.  A pseudospectral method for time-domain computation of electromagnetic scattering by bodies of revolution , 1999 .

[31]  Chi-Wang Shu,et al.  Runge–Kutta Discontinuous Galerkin Methods for Convection-Dominated Problems , 2001, J. Sci. Comput..

[32]  David I. Gottlieb,et al.  Optimal Decomposition of the Domain in Spectral Methods for Wave-Like Phenomena , 2000, SIAM J. Sci. Comput..

[33]  J. Hesthaven,et al.  High–order nodal discontinuous Galerkin methods for the Maxwell eigenvalue problem , 2004, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[34]  Clint Dawson,et al.  High Resolution Schemes for Conservation Laws with Locally Varying Time Steps , 2000, SIAM J. Sci. Comput..

[35]  Gilbert Strang,et al.  Accurate partial difference methods , 1964 .

[36]  Peter Monk,et al.  Mur-nédélec finite element schemes for Maxwell's equations , 1999 .

[37]  Applications of the 2.5-D multidomain pseudospectral time-domain algorithm , 2002, IEEE Antennas and Propagation Society International Symposium (IEEE Cat. No.02CH37313).

[38]  Keith D. Paulsen,et al.  Origin of vector parasites in numerical Maxwell solutions , 1991 .

[39]  Fernando L. Teixeira,et al.  Dispersion-relation-preserving FDTD algorithms for large-scale three-dimensional problems , 2003 .

[40]  J. S. Shang,et al.  A Comparative Study of Characteristic-Based Algorithms for the Maxwell Equations , 1996 .

[41]  D. Gottlieb,et al.  Stable and accurate boundary treatments for compact, high-order finite-difference schemes , 1993 .

[42]  Debiao Ge,et al.  Comparison study of the PSTD and FDTD methods for scattering analysis , 2000 .

[43]  T. Hagstrom Radiation boundary conditions for the numerical simulation of waves , 1999, Acta Numerica.

[44]  Jan S. Hesthaven,et al.  From Electrostatics to Almost Optimal Nodal Sets for Polynomial Interpolation in a Simplex , 1998 .

[45]  Jan S. Hesthaven,et al.  Stable spectral methods for conservation laws on triangles with unstructured grids , 1999 .

[46]  C. Tam,et al.  Dispersion-relation-preserving finite difference schemes for computational acoustics , 1993 .

[47]  Jin-Fa Lee,et al.  Time-domain finite-element methods , 1997 .

[48]  H. Kreiss,et al.  Comparison of accurate methods for the integration of hyperbolic equations , 1972 .

[49]  Roberto D. Graglia,et al.  Higher order interpolatory vector bases for computational electromagnetics," Special Issue on "Advanced Numerical Techniques in Electromagnetics , 1997 .

[50]  Kishore Rama Rao,et al.  Discretization errors in finite methods: issues and possible solutions , 1999 .

[51]  M. Carpenter,et al.  Additive Runge-Kutta Schemes for Convection-Diffusion-Reaction Equations , 2003 .

[52]  Davis A. Kopriva,et al.  Computation of electromagnetic scattering with a non‐conforming discontinuous spectral element method , 2002 .

[53]  Amir Yefet,et al.  A staggered fourth-order accurate explicit finite difference scheme for the time-domain Maxwell's equations , 2001 .

[54]  S. Lele Compact finite difference schemes with spectral-like resolution , 1992 .

[55]  Endre Süli,et al.  Error estimates for Yee's method on non-uniform grids , 1994 .

[56]  Wei-Ping Huang,et al.  Application and optimization of PML ABC for the 3-D wave equation in the time domain , 2003 .

[57]  Jan S. Hesthaven,et al.  Stable Spectral Methods on Tetrahedral Elements , 1999, SIAM J. Sci. Comput..

[58]  Gary Cohen Higher-Order Numerical Methods for Transient Wave Equations , 2001 .

[59]  K. Paulsen,et al.  Elimination of vector parasites in finite element Maxwell solutions , 1991 .

[60]  T. Koornwinder Two-Variable Analogues of the Classical Orthogonal Polynomials , 1975 .

[61]  D. Gaitonde,et al.  High-order finite-volume schemes in wave propagation phenomena , 1996 .

[62]  T. Warburton Application of the Discontinuous Galerkin Method to Maxwell’s Equations Using Unstructured Polymorphic hp-Finite Elements , 2000 .

[63]  R. J. Joseph,et al.  Advances in Computational Electrodynamics: The Finite - Di erence Time - Domain Method , 1998 .

[64]  R. Holland Finite-Difference Solution of Maxwell's Equations in Generalized Nonorthogonal Coordinates , 1983, IEEE Transactions on Nuclear Science.

[65]  Allen Taflove,et al.  Computational Electrodynamics the Finite-Difference Time-Domain Method , 1995 .

[66]  D. Gaitonde,et al.  Scattering simulations of computational electromagnetics , 1996 .

[67]  Keith D. Paulsen,et al.  Nodal-based finite-element modeling of Maxwell's equations , 1992 .

[68]  H. Kreiss,et al.  Finite Element and Finite Difference Methods for Hyperbolic Partial Differential Equations , 1974 .

[69]  P. Silvester,et al.  Numerical Solution of Dielectric Loaded Waveguides: I-Finite-Element Analysis , 1970 .

[70]  B. Jiang The Least-Squares Finite Element Method: Theory and Applications in Computational Fluid Dynamics and Electromagnetics , 1998 .

[71]  M. Y. Hussaini,et al.  An Analysis of the Discontinuous Galerkin Method for Wave Propagation Problems , 1999 .

[72]  Mark Ainsworth,et al.  Hierarchic finite element bases on unstructured tetrahedral meshes , 2003 .

[73]  Jian-Ming Jin,et al.  Fast and Efficient Algorithms in Computational Electromagnetics , 2001 .

[74]  R. Kleinman,et al.  Second International Conference on Mathematical and Numerical Aspects of Wave Propagation , 1993 .

[75]  Vijaya Shankar,et al.  Computation of electromagnetic scattering and radiation using a time-domain finite-volume discretization procedure , 1991 .

[76]  R. Luebbers,et al.  The Finite Difference Time Domain Method for Electromagnetics , 1993 .

[77]  Harold L. Atkins,et al.  Eigensolution analysis of the discontinuous Galerkin method with non-uniform grids , 2001 .

[78]  H. Kreiss,et al.  Time-Dependent Problems and Difference Methods , 1996 .

[79]  Semyon Tsynkov,et al.  Global discrete artificial boundary conditions for time-dependent wave propagation , 2001 .

[80]  Keith D. Paulsen,et al.  Time-domain integration of the Maxwell equations on finite elements , 1990 .

[81]  Z. Cendes,et al.  Spurious modes in finite-element methods , 1995 .

[82]  Jian-Ming Jin,et al.  The Finite Element Method in Electromagnetics , 1993 .

[83]  Peter G. Petropoulos,et al.  Phase error control for FD-TD methods of second and fourth order accuracy , 1994 .

[84]  M.Y. Hussaini,et al.  Low-Dissipation and Low-Dispersion Runge-Kutta Schemes for Computational Acoustics , 1994 .

[85]  D. Gaitonde,et al.  Practical aspects of high-order accurate finite-volume schemes for electromagnetics , 1997 .

[86]  Peter P. Silvester,et al.  Finite Elements for Electrical Engineers , 1983 .

[87]  Qing Huo Liu,et al.  Multidomain pseudospectral time-domain simulations of scattering by objects buried in lossy media , 2002, IEEE Trans. Geosci. Remote. Sens..

[88]  Jan S. Hesthaven,et al.  Spectral penalty methods , 2000 .

[89]  Jian-Ming Jin,et al.  Time-domain finite-element simulation of three-dimensional scattering and radiation problems using perfectly matched layers , 2003 .

[90]  Ralf Hiptmair,et al.  Canonical construction of finite elements , 1999, Math. Comput..

[91]  B. Strand Summation by parts for finite difference approximations for d/dx , 1994 .

[92]  Cj Railton,et al.  Proceedings of Fourth International Workshop on "Computational Electromagnetics in the Time Domain: TLM/FDTD and Related Techniques"(CEM-TD) , 2001 .

[93]  Jan Nordström,et al.  High Order Finite Difference Approximations of Electromagnetic Wave Propagation Close to Material Discontinuities , 2003, J. Sci. Comput..

[94]  Andreas C. Cangellaris,et al.  A Reflectionless Sponge Layer Absorbing Boundary Condition for the Solution of Maxwell's Equations with High-Order Staggered Finite Difference Schemes , 1998 .

[95]  Datta V. Gaitonde,et al.  Optimized Compact-Difference-Based Finite-Volume Schemes for Linear Wave Phenomena , 1997 .

[96]  J. Hesthaven,et al.  Convergent Cartesian Grid Methods for Maxwell's Equations in Complex Geometries , 2001 .

[97]  Marcus J. Grote,et al.  Nonreflecting Boundary Conditions for Maxwell's Equations , 1998 .

[98]  B. Gustafsson The convergence rate for difference approximations to mixed initial boundary value problems , 1975 .

[99]  J. Hesthaven,et al.  High-Order Accurate Methods for Time-domain Electromagnetics , 2004 .

[100]  Jean-Pierre Berenger,et al.  A perfectly matched layer for the absorption of electromagnetic waves , 1994 .

[101]  Jian-Ming Jin,et al.  Three-dimensional orthogonal vector basis functions for time-domain finite element solution of vector wave equations , 2003 .

[102]  Bo-nan Jiang,et al.  The Origin of Spurious Solutions in Computational Electromagnetics , 1996 .

[103]  J. Butcher The numerical analysis of ordinary differential equations: Runge-Kutta and general linear methods , 1987 .

[104]  David A. Kopriva Computation of hyperbolic equations on complicated domains with patched and overset Chebyshev grids , 1989 .

[105]  Eli Turkel,et al.  On the construction of a high order difference scheme for complex domains in a Cartesian grid , 2000 .

[106]  R. Hiptmair Finite elements in computational electromagnetism , 2002, Acta Numerica.

[107]  Tobin A. Driscoll,et al.  A Block Pseudospectral Method for Maxwell's Equations , 1998 .

[108]  Gian-Carlo Rota,et al.  Theory and application of special functions , 1977 .

[109]  K. D. Paulsen,et al.  Accurate solutions of Maxwell's equations around PEC corners and highly curved surfaces using nodal finite elements , 1997 .

[110]  Jan S. Hesthaven,et al.  A Stable Penalty Method for the Compressible Navier-Stokes Equations: II. One-Dimensional Domain Decomposition Schemes , 1997, SIAM J. Sci. Comput..

[111]  A. Bossavit Solving Maxwell equations in a closed cavity, and the question of 'spurious modes' , 1990 .

[112]  Paul Fischer,et al.  On the Optimal Number of Subdomains for Hyperbolic Problems on Parallel Computers , 1997, Int. J. High Perform. Comput. Appl..

[113]  Harold L. Atkins,et al.  Two-dimensional Wave Analysis of the Discontinuous Galerkin Method with Non-Uniform Grids and Boundary Conditions , 2002 .

[114]  K. Paulsen,et al.  Continuous potential Maxwell solutions on nodal-based finite elements , 1992 .

[115]  Ralf Hiptmair,et al.  HIGHER ORDER WHITNEY FORMS , 2001 .

[116]  L. Demkowicz,et al.  Modeling of electromagnetic absorption/scattering problems using hp-adaptive finite elements , 1998 .

[117]  Jian-Ming Jin,et al.  A fast higher-order time-domain finite element-boundary integral method for 3-D electromagnetic scattering analysis , 2002 .

[118]  Jan S. Hesthaven,et al.  Multidomain pseudospectral computation of Maxwell's equations in 3-D general curvilinear coordinates , 2000 .

[119]  T. Senior,et al.  Electromagnetic and Acoustic Scattering by Simple Shapes , 1969 .

[120]  Moshe Dubiner Spectral methods on triangles and other domains , 1991 .

[121]  S. Osher,et al.  Uniformly high order accurate essentially non-oscillatory schemes, 111 , 1987 .

[122]  D. Gottlieb,et al.  Spectral methods for hyperbolic problems , 2001 .

[123]  K. Yee Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media , 1966 .

[124]  Harold L. Atkins,et al.  QUADRATURE-FREE IMPLEMENTATION OF DISCONTINUOUS GALERKIN METHOD FOR HYPERBOLIC EQUATIONS , 1996 .

[125]  David W. Zingg,et al.  Numerical Solution of the Time-Domain Maxwell Equations Using High-Accuracy Finite-Difference Methods , 2000, SIAM J. Sci. Comput..

[126]  J. Hesthaven,et al.  Nodal high-order methods on unstructured grids , 2002 .

[127]  Qing Huo Liu,et al.  Large-scale simulations of electromagnetic and acoustic measurements using the pseudospectral time-domain (PSTD) algorithm , 1999, IEEE Trans. Geosci. Remote. Sens..

[128]  Fourth order, full‐stencil immersed interface method for elastic waves with discontinuous coefficients , 1998 .

[129]  D. Kopriva A spectral multidomain method for the solution of hyperbolic systems , 1986 .

[130]  J. P. Webb Hierarchal vector basis functions of arbitrary order for triangular and tetrahedral finite elements , 1999 .

[131]  Qing Huo Liu,et al.  The 2.5-D multidomain pseudospectral time-domain algorithm , 2003 .

[132]  Bengt Fornberg,et al.  Classroom Note: Calculation of Weights in Finite Difference Formulas , 1998, SIAM Rev..