Uncovering genetic mechanisms of hypertension through multi-omic analysis of the kidney

[1]  James M. Eales,et al.  Hypertension and renin-angiotensin system blockers are not associated with expression of angiotensin-converting enzyme 2 (ACE2) in the kidney , 2020, medRxiv.

[2]  Daniel W. A. Buchan,et al.  The PSIPRED Protein Analysis Workbench: 20 years on , 2019, Nucleic Acids Res..

[3]  Ole Winther,et al.  NetSurfP‐2.0: Improved prediction of protein structural features by integrated deep learning , 2019, Proteins.

[4]  Myung Ho Jeong,et al.  Class I histone deacetylase inhibitor MS-275 attenuates vasoconstriction and inflammation in angiotensin II-induced hypertension , 2019, PloS one.

[5]  James M. Eales,et al.  Uncovering genetic mechanisms of kidney aging through transcriptomics, genomics, and epigenomics , 2019, Kidney international.

[6]  Konstantinos D. Tsirigos,et al.  SignalP 5.0 improves signal peptide predictions using deep neural networks , 2019, Nature Biotechnology.

[7]  T. Beaty,et al.  Analysis of genetically driven alternative splicing identifies FBXO38 as a novel COPD susceptibility gene , 2019, bioRxiv.

[8]  James M. Eales,et al.  Trans-ethnic kidney function association study reveals putative causal genes and effects on kidney-specific disease aetiologies , 2019, Nature Communications.

[9]  Samantha A. Morris,et al.  Comparative Analysis and Refinement of Human PSC-Derived Kidney Organoid Differentiation with Single-Cell Transcriptomics. , 2018, Cell stem cell.

[10]  Jack Bowden,et al.  Improving the visualization, interpretation and analysis of two-sample summary data Mendelian randomization via the Radial plot and Radial regression , 2018, International journal of epidemiology.

[11]  Silvio C. E. Tosatto,et al.  InterPro in 2019: improving coverage, classification and access to protein sequence annotations , 2018, Nucleic Acids Res..

[12]  Laura J. Scott,et al.  Trans-ethnic association study of blood pressure determinants in over 750,000 individuals , 2018, Nature Genetics.

[13]  James M. Eales,et al.  Molecular insights into genome-wide association studies of chronic kidney disease-defining traits , 2018, Nature Communications.

[14]  Bin Zhang,et al.  Integrative transcriptome analyses of the aging brain implicate altered splicing in Alzheimer’s disease susceptibility , 2018, Nature Genetics.

[15]  Mary E. Haas,et al.  Genetic Association of Albuminuria with Cardiometabolic Disease and Blood Pressure. , 2018, American journal of human genetics.

[16]  Christian Gieger,et al.  Genetic analysis of over 1 million people identifies 535 new loci associated with blood pressure traits , 2018, Nature Genetics.

[17]  Sarah A. Teichmann,et al.  Single-cell transcriptomes from human kidneys reveal the cellular identity of renal tumors , 2018, Science.

[18]  G. d’Annunzio,et al.  Genetic causes and treatment of neonatal diabetes and early childhood diabetes. , 2018, Best practice & research. Clinical endocrinology & metabolism.

[19]  Paul J. Hoover,et al.  An eQTL landscape of kidney tissue in human nephrotic syndrome , 2018, bioRxiv.

[20]  D. Prabhakaran,et al.  May Measurement Month 2017: an analysis of blood pressure screening results worldwide. , 2018, The Lancet. Global health.

[21]  Ayellet V. Segrè,et al.  Using an atlas of gene regulation across 44 human tissues to inform complex disease- and trait-associated variation , 2018, Nature Genetics.

[22]  Nancy R. Zhang,et al.  Bulk tissue cell type deconvolution with multi-subject single-cell expression reference , 2018, Nature Communications.

[23]  B. Neale,et al.  Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases , 2018, Nature Genetics.

[24]  J. Mill,et al.  Leveraging DNA-Methylation Quantitative-Trait Loci to Characterize the Relationship between Methylomic Variation, Gene Expression, and Complex Traits , 2018, bioRxiv.

[25]  Paul Hoffman,et al.  Integrating single-cell transcriptomic data across different conditions, technologies, and species , 2018, Nature Biotechnology.

[26]  Valeriia Haberland,et al.  The MR-Base platform supports systematic causal inference across the human phenome , 2018, eLife.

[27]  Y. Xing,et al.  The Expanding Landscape of Alternative Splicing Variation in Human Populations , 2018, American journal of human genetics.

[28]  May E. Montasser,et al.  DNA Methylation Analysis Identifies Loci for Blood Pressure Regulation. , 2017, American journal of human genetics.

[29]  Lukas Zimmermann,et al.  A Completely Reimplemented MPI Bioinformatics Toolkit with a New HHpred Server at its Core. , 2017, Journal of molecular biology.

[30]  Astrid Gall,et al.  Ensembl 2018 , 2017, Nucleic Acids Res..

[31]  Alex H. Wagner,et al.  DGIdb 3.0: a redesign and expansion of the drug–gene interaction database , 2017, bioRxiv.

[32]  S. Cichon,et al.  Genome-wide mapping of genetic determinants influencing DNA methylation and gene expression in human hippocampus , 2017, Nature Communications.

[33]  David A. Knowles,et al.  Annotation-free quantification of RNA splicing using LeafCutter , 2017, Nature Genetics.

[34]  David S. Wishart,et al.  DrugBank 5.0: a major update to the DrugBank database for 2018 , 2017, Nucleic Acids Res..

[35]  Manolis Kellis,et al.  Chromatin-state discovery and genome annotation with ChromHMM , 2017, Nature Protocols.

[36]  G. Davey Smith,et al.  Orienting the causal relationship between imprecisely measured traits using GWAS summary data , 2017, PLoS genetics.

[37]  Nicola J. Rinaldi,et al.  Genetic effects on gene expression across human tissues , 2017, Nature.

[38]  Xiaobin Han,et al.  Cardiovascular Effects of Renal Distal Tubule Deletion of the FGF Receptor 1 Gene. , 2017, Journal of the American Society of Nephrology : JASN.

[39]  P. O’Reilly,et al.  Correction: Corrigendum: Genome-wide association analysis identifies novel blood pressure loci and offers biological insights into cardiovascular risk , 2017, Nature Genetics.

[40]  Ellis Patrick,et al.  An xQTL map integrates the genetic architecture of the human brain’s transcriptome and epigenome , 2017, Nature Neuroscience.

[41]  Wen Zhang,et al.  A Bayesian Framework for Multiple Trait Colocalization from Summary Association Statistics , 2017, bioRxiv.

[42]  K. Rawlik,et al.  An atlas of genetic associations in UK Biobank , 2017, bioRxiv.

[43]  Andrew D. Johnson,et al.  Novel Blood Pressure Locus and Gene Discovery Using Genome-Wide Association Study and Expression Data Sets From Blood and the Kidney , 2017, Hypertension.

[44]  B. Tycko,et al.  Genetic–epigenetic interactions in cis: a major focus in the post-GWAS era , 2017, Genome Biology.

[45]  Christopher D. Brown,et al.  Genetic-Variation-Driven Gene-Expression Changes Highlight Genes with Important Functions for Kidney Disease. , 2017, American journal of human genetics.

[46]  Olena O Yavorska,et al.  MendelianRandomization: an R package for performing Mendelian randomization analyses using summarized data , 2017, International journal of epidemiology.

[47]  Allison J. Taggart,et al.  Large-scale analysis of branchpoint usage across species and cell lines. , 2017, Genome research.

[48]  George Papadatos,et al.  The ChEMBL database in 2017 , 2016, Nucleic Acids Res..

[49]  N. Risch,et al.  Genome-wide association analyses using electronic health records identify new loci influencing blood pressure variation , 2016, Nature Genetics.

[50]  Alexis Battle,et al.  Co-expression networks reveal the tissue-specific regulation of transcription and splicing , 2019 .

[51]  L. Wilkins Low-frequency and common genetic variation in ischemic stroke: The METASTROKE collaboration , 2016, Neurology.

[52]  K. Hodaňová,et al.  Acadian variant of Fanconi syndrome is caused by mitochondrial respiratory chain complex I deficiency due to a non-coding mutation in complex I assembly factor NDUFAF6. , 2016, Human molecular genetics.

[53]  He Zhang,et al.  Trans-ancestry meta-analyses identify rare and common variants associated with blood pressure and hypertension , 2016, Nature Genetics.

[54]  Claude Bouchard,et al.  Meta-analysis identifies common and rare variants influencing blood pressure and overlapping with metabolic trait loci , 2016, Nature Genetics.

[55]  Xiaoquan Wen,et al.  Molecular QTL discovery incorporating genomic annotations using Bayesian false discovery rate control , 2016 .

[56]  Alan M. Kwong,et al.  Next-generation genotype imputation service and methods , 2016, Nature Genetics.

[57]  Xiaofeng Zhu,et al.  The genetics of blood pressure regulation and its target organs from association studies in 342,415 individuals , 2016, Nature Genetics.

[58]  John P. Overington,et al.  The druggable genome and support for target identification and validation in drug development , 2016, Science Translational Medicine.

[59]  Jean-Philippe Fortin,et al.  Preprocessing, normalization and integration of the Illumina HumanMethylationEPIC array with minfi , 2016, bioRxiv.

[60]  F. Dudbridge,et al.  Robust instrumental variable methods using multiple candidate instruments with application to Mendelian randomization , 2016, 1606.03729.

[61]  Xin Li,et al.  The impact of structural variation on human gene expression , 2016, Nature Genetics.

[62]  J. Drazkowski,et al.  Topiramate for Treatment in Patients With Migraine and Epilepsy , 2016, Headache.

[63]  B. Tycko,et al.  Mechanisms and Disease Associations of Haplotype-Dependent Allele-Specific DNA Methylation. , 2016, American journal of human genetics.

[64]  G. Davey Smith,et al.  Consistent Estimation in Mendelian Randomization with Some Invalid Instruments Using a Weighted Median Estimator , 2016, Genetic epidemiology.

[65]  Lior Pachter,et al.  Near-optimal probabilistic RNA-seq quantification , 2016, Nature Biotechnology.

[66]  Tom R. Gaunt,et al.  Edinburgh Research Explorer Genetic associations at 53 loci highlight cell types and biological pathways relevant for kidney function , 2022 .

[67]  Sylvia Stracke,et al.  Genome-wide Association Studies Identify Genetic Loci Associated With Albuminuria in Diabetes , 2015, Diabetes.

[68]  Peer Bork,et al.  The SIDER database of drugs and side effects , 2015, Nucleic Acids Res..

[69]  Ellen T. Gelfand,et al.  A Novel Approach to High-Quality Postmortem Tissue Procurement: The GTEx Project , 2015, Biopreservation and biobanking.

[70]  Jing He,et al.  Trans-ancestry genome-wide association study identifies 12 genetic loci influencing blood pressure and implicates a role for DNA methylation , 2015, Nature Genetics.

[71]  Sebastian M. Armasu,et al.  A comprehensive 1000 Genomes-based genome-wide association meta-analysis of coronary artery disease , 2015, Nature Genetics.

[72]  James M. Eales,et al.  Signatures of miR-181a on the Renal Transcriptome and Blood Pressure , 2015, Molecular medicine.

[73]  Emmanouil T. Dermitzakis,et al.  Fast and efficient QTL mapper for thousands of molecular phenotypes , 2015, bioRxiv.

[74]  G. Abecasis,et al.  An efficient and scalable analysis framework for variant extraction and refinement from population-scale DNA sequence data , 2015, Genome research.

[75]  Arne Elofsson,et al.  The TOPCONS web server for consensus prediction of membrane protein topology and signal peptides , 2015, Nucleic Acids Res..

[76]  Jun S. Liu,et al.  The Genotype-Tissue Expression (GTEx) pilot analysis: Multitissue gene regulation in humans , 2015, Science.

[77]  Begoña Aguado,et al.  Global variability in gene expression and alternative splicing is modulated by mitochondrial content , 2015, Genome research.

[78]  James M. Eales,et al.  Renal Mechanisms of Association between Fibroblast Growth Factor 1 and Blood Pressure. , 2015, Journal of the American Society of Nephrology : JASN.

[79]  G. Davey Smith,et al.  Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression , 2015, International journal of epidemiology.

[80]  Jan Graffelman,et al.  Exploring Diallelic Genetic Markers: The HardyWeinberg Package , 2015 .

[81]  Mary D. Fortune,et al.  Integration of disease association and eQTL data using a Bayesian colocalisation approach highlights six candidate causal genes in immune-mediated diseases , 2015, Human molecular genetics.

[82]  P. Munroe,et al.  Exploring hypertension genome‐wide association studies findings and impact on pathophysiology, pathways, and pharmacogenetics , 2015, Wiley interdisciplinary reviews. Systems biology and medicine.

[83]  Roby Joehanes,et al.  Identification of common genetic variants controlling transcript isoform variation in human whole blood , 2015, Nature Genetics.

[84]  P. Elliott,et al.  A coherent approach for analysis of the Illumina HumanMethylation450 BeadChip improves data quality and performance in epigenome-wide association studies , 2015, Genome Biology.

[85]  Michael Q. Zhang,et al.  Integrative analysis of 111 reference human epigenomes , 2015, Nature.

[86]  Derek W Wright,et al.  Gateways to the FANTOM5 promoter level mammalian expression atlas , 2015, Genome Biology.

[87]  Carson C Chow,et al.  Second-generation PLINK: rising to the challenge of larger and richer datasets , 2014, GigaScience.

[88]  K. Ekwall,et al.  Epigenetics, chromatin and genome organization: recent advances from the ENCODE project , 2014, Journal of internal medicine.

[89]  Paul Theodor Pyl,et al.  HTSeq – A Python framework to work with high-throughput sequencing data , 2014, bioRxiv.

[90]  T. Coffman The inextricable role of the kidney in hypertension. , 2014, The Journal of clinical investigation.

[91]  Rafael A. Irizarry,et al.  Minfi: a flexible and comprehensive Bioconductor package for the analysis of Infinium DNA methylation microarrays , 2014, Bioinform..

[92]  P. Sullivan,et al.  Heritability and Genomics of Gene Expression in Peripheral Blood , 2014, Nature Genetics.

[93]  Jing Wang,et al.  CrossMap: a versatile tool for coordinate conversion between genome assemblies , 2014, Bioinform..

[94]  Björn Usadel,et al.  Trimmomatic: a flexible trimmer for Illumina sequence data , 2014, Bioinform..

[95]  A. Demaine,et al.  AKR1B10 is induced by hyperglycaemia and lipopolysaccharide in patients with diabetic nephropathy , 2014, Cell Stress and Chaperones.

[96]  Lynn M Almli,et al.  Methylation quantitative trait loci (meQTLs) are consistently detected across ancestry, developmental stage, and tissue type , 2014, BMC Genomics.

[97]  Matthew Fraser,et al.  InterProScan 5: genome-scale protein function classification , 2014, Bioinform..

[98]  A. Butterworth,et al.  Mendelian Randomization Analysis With Multiple Genetic Variants Using Summarized Data , 2013, Genetic epidemiology.

[99]  Joshua M. Stuart,et al.  The Cancer Genome Atlas Pan-Cancer analysis project , 2013, Nature Genetics.

[100]  B. Pierce,et al.  Efficient Design for Mendelian Randomization Studies: Subsample and 2-Sample Instrumental Variable Estimators , 2013, American journal of epidemiology.

[101]  The Cancer Genome Atlas Research Network COMPREHENSIVE MOLECULAR CHARACTERIZATION OF CLEAR CELL RENAL CELL CARCINOMA , 2013, Nature.

[102]  Chia-Yen Chen,et al.  Improved ancestry inference using weights from external reference panels , 2013, Bioinform..

[103]  Ruth Pidsley,et al.  A data-driven approach to preprocessing Illumina 450K methylation array data , 2013, BMC Genomics.

[104]  Sandy Chang Cancer chromosomes going to POT1 , 2013, Nature Genetics.

[105]  S. R. Kerman,et al.  The effect of topiramate on weight loss in patients with type 2 diabetes , 2013, Journal of research in medical sciences : the official journal of Isfahan University of Medical Sciences.

[106]  Vassilios Ioannidis,et al.  ExPASy: SIB bioinformatics resource portal , 2012, Nucleic Acids Res..

[107]  R. Durbin,et al.  Using probabilistic estimation of expression residuals (PEER) to obtain increased power and interpretability of gene expression analyses , 2012, Nature Protocols.

[108]  Tom R. Gaunt,et al.  Genetic Variants in Novel Pathways Influence Blood Pressure and Cardiovascular Disease Risk , 2011, Nature.

[109]  Gonçalo R. Abecasis,et al.  The variant call format and VCFtools , 2011, Bioinform..

[110]  P. Doris The genetics of blood pressure and hypertension: the role of rare variation. , 2011, Cardiovascular therapeutics.

[111]  R. Durbin,et al.  Joint Genetic Analysis of Gene Expression Data with Inferred Cellular Phenotypes , 2011, PLoS genetics.

[112]  Xiao Zhang,et al.  Comparison of Beta-value and M-value methods for quantifying methylation levels by microarray analysis , 2010, BMC Bioinformatics.

[113]  Josyf Mychaleckyj,et al.  Robust relationship inference in genome-wide association studies , 2010, Bioinform..

[114]  Leopold Parts,et al.  A Bayesian Framework to Account for Complex Non-Genetic Factors in Gene Expression Levels Greatly Increases Power in eQTL Studies , 2010, PLoS Comput. Biol..

[115]  Davis J. McCarthy,et al.  edgeR: a Bioconductor package for differential expression analysis of digital gene expression data , 2009, Bioinform..

[116]  H. Murota,et al.  Novel Functional Aspect of Antihistamines: The Impact of Bepotastine Besilate on Substance P-Induced Events , 2009, Journal of allergy.

[117]  Brad T. Sherman,et al.  The DAVID Gene Functional Classification Tool: a novel biological module-centric algorithm to functionally analyze large gene lists , 2007, Genome Biology.

[118]  Manuel A. R. Ferreira,et al.  PLINK: a tool set for whole-genome association and population-based linkage analyses. , 2007, American journal of human genetics.

[119]  Michael Böhm,et al.  2013 ESH/ESC Guidelines for the management of arterial hypertension: the Task Force for the management of arterial hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). , 2007, Journal of hypertension.

[120]  S. Brunak,et al.  Locating proteins in the cell using TargetP, SignalP and related tools , 2007, Nature Protocols.

[121]  D. Reich,et al.  Principal components analysis corrects for stratification in genome-wide association studies , 2006, Nature Genetics.

[122]  S. Tonstad,et al.  Efficacy and safety of topiramate in the treatment of obese subjects with essential hypertension. , 2005, The American journal of cardiology.

[123]  S. Ebrahim,et al.  What can mendelian randomisation tell us about modifiable behavioural and environmental exposures? , 2005, BMJ : British Medical Journal.

[124]  N. Blom,et al.  Prediction of post‐translational glycosylation and phosphorylation of proteins from the amino acid sequence , 2004, Proteomics.

[125]  John D. Storey,et al.  Statistical significance for genomewide studies , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[126]  A. Hopkins,et al.  The druggable genome , 2002, Nature Reviews Drug Discovery.

[127]  N. Blom,et al.  Sequence and structure-based prediction of eukaryotic protein phosphorylation sites. , 1999, Journal of molecular biology.

[128]  Erik L. L. Sonnhammer,et al.  A Hidden Markov Model for Predicting Transmembrane Helices in Protein Sequences , 1998, ISMB.

[129]  E. Schiffrin,et al.  Enhanced expression of endothelin‐1 gene in resistance arteries in severe human essential hypertension , 1997, Journal of hypertension.

[130]  Laurens van der Maaten,et al.  Accelerating t-SNE using tree-based algorithms , 2014, J. Mach. Learn. Res..

[131]  Helmut Baumgartner,et al.  The 2013 ESH/ESC guidelines for the management of arterial hypertension , 2013 .

[132]  Thomas R. Gingeras,et al.  STAR: ultrafast universal RNA-seq aligner , 2013, Bioinform..

[133]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .