Starch treatment improves the salivary proteome for subject identification purposes

[1]  M. Affolter,et al.  Proteomics of human biological fluids for biomarker discoveries: technical advances and recent applications , 2022, Expert review of proteomics.

[2]  C. Giulivi,et al.  Saliva Protein Profiling for Subject Identification and Potential Medical Applications , 2021, Medicine in Omics.

[3]  Kathleen M. Jagodnik,et al.  Gene Set Knowledge Discovery with Enrichr , 2021, Current protocols.

[4]  R. Gruber,et al.  Saliva proteomic patterns in patients with molar incisor hypomineralization , 2020, Scientific Reports.

[5]  R. Ansell,et al.  The double-swab technique versus single swabs for human DNA recovery from various surfaces. , 2020, Forensic science international. Genetics.

[6]  Winston Timp,et al.  Beyond mass spectrometry, the next step in proteomics , 2020, Science Advances.

[7]  H. Hasturk,et al.  Mapping Relative Differences in Human Salivary Gland Secretions by Dried Saliva Spot Sampling and nanoLC–MS/MS , 2019, Proteomics.

[8]  B. Phinney,et al.  Proteomic genotyping of fingermark donors with genetically variant peptides. , 2019, Forensic science international. Genetics.

[9]  Othman Soufan,et al.  NetworkAnalyst 3.0: a visual analytics platform for comprehensive gene expression profiling and meta-analysis , 2019, Nucleic Acids Res..

[10]  Xuedong Zhou,et al.  iTRAQ-based quantitative analysis of age-specific variations in salivary proteome of caries-susceptible individuals , 2018, Journal of Translational Medicine.

[11]  G. Parker,et al.  Protein-based forensic identification using genetically variant peptides in human bone. , 2018, Forensic science international.

[12]  S. Chatterjee Saliva as a forensic tool , 2018, Journal of forensic dental sciences.

[13]  Koichi Sakurada,et al.  Practical evaluation of an RNA-based saliva identification method. , 2017, Science & justice : journal of the Forensic Science Society.

[14]  P. Breslin,et al.  Salivary Amylase: Digestion and Metabolic Syndrome , 2016, Current Diabetes Reports.

[15]  David M. Rocke,et al.  Demonstration of Protein-Based Human Identification Using the Hair Shaft Proteome , 2016, PloS one.

[16]  Philipp E. Geyer,et al.  Ultra-deep and quantitative saliva proteome reveals dynamics of the oral microbiome , 2016, Genome Medicine.

[17]  Lavanya Balakrishnan,et al.  Human salivary proteome--a resource of potential biomarkers for oral cancer. , 2015, Journal of proteomics.

[18]  E. Moffa,et al.  The Impact of Stannous, Fluoride Ions and Its Combination on Enamel Pellicle Proteome and Dental Erosion Prevention , 2015, PloS one.

[19]  Jaak Vilo,et al.  ClustVis: a web tool for visualizing clustering of multivariate data using Principal Component Analysis and heatmap , 2015, Nucleic Acids Res..

[20]  S. Rapi,et al.  Stability of human α-salivary amylase in aged forensic samples. , 2014, Legal medicine.

[21]  S. Chandra,et al.  Quantitative and qualitative assessment of DNA extracted from saliva for its use in forensic identification , 2014, Journal of forensic dental sciences.

[22]  L. Márk,et al.  Comparative Salivary Proteomics of Cleft Palate Patients , 2012, The Cleft palate-craniofacial journal : official publication of the American Cleft Palate-Craniofacial Association.

[23]  Dieter Deforce,et al.  Mass spectrometry-based proteomics as a tool to identify biological matrices in forensic science , 2012, International Journal of Legal Medicine.

[24]  K. Matsushita,et al.  Proteomic analysis of gingival crevicular fluid for discovery of novel periodontal disease markers , 2012, Proteomics.

[25]  Hua Xiao,et al.  Method development for proteome stabilization in human saliva. , 2012, Analytica chimica acta.

[26]  D. Chia,et al.  Direct saliva transcriptome analysis. , 2011, Clinical chemistry.

[27]  J. Duarte,et al.  Salivary peptidomics , 2010, Expert review of proteomics.

[28]  P. Ramachandran,et al.  Comparative Human Salivary and Plasma Proteomes , 2010, Journal of dental research.

[29]  Paul S Spradbery Restriction fragment length polymorphisms of mutans streptococci in forensic odontological analysis , 2010 .

[30]  J. Yates,et al.  Quantitative analysis of age specific variation in the abundance of human female parotid salivary proteins. , 2009, Journal of proteome research.

[31]  David S. Wishart,et al.  MetaboAnalyst: a web server for metabolomic data analysis and interpretation , 2009, Nucleic Acids Res..

[32]  V. Venkataraman,et al.  Probing the role of aromatic residues at the secondary saccharide-binding sites of human salivary alpha-amylase in substrate hydrolysis and bacterial binding. , 2008, Journal of molecular biology.

[33]  Y. Fleissig,et al.  An approach to remove alpha amylase for proteomic analysis of low abundance biomarkers in human saliva , 2008, Electrophoresis.

[34]  Jianghuai Wang,et al.  Age and gender related differences in human parotid gland gene expression. , 2008, Archives of oral biology.

[35]  W. Siqueira,et al.  Proteome of Human Minor Salivary Gland Secretion , 2008, Journal of dental research.

[36]  A. Chakraborty,et al.  Comparative profiling of human saliva by intact protein LC/ESI-TOF mass spectrometry. , 2007, Biochimica et biophysica acta.

[37]  W. Siqueira,et al.  Salivary Proteome and Its Genetic Polymorphisms , 2007, Annals of the New York Academy of Sciences.

[38]  E. Dransfield,et al.  Salivary Protein/Peptide Profiling with SELDI‐TOF‐MS , 2007, Annals of the New York Academy of Sciences.

[39]  D. T. Wong,et al.  Human body fluid proteome analysis , 2006, Proteomics.

[40]  M. Burrow,et al.  Quantitative assessment for stimulated saliva flow rate and buffering capacity in relation to different ages. , 2006, Journal of dentistry.

[41]  R. Mukhopadhyay Devices to drool for. , 2006, Analytical chemistry.

[42]  Weijie Wang,et al.  Characterization of the human salivary proteome by capillary isoelectric focusing/nanoreversed-phase liquid chromatography coupled with ESI-tandem MS. , 2006, Journal of proteome research.

[43]  Kai Stühler,et al.  Proteome analysis of glandular parotid and submandibular‐sublingual saliva in comparison to whole human saliva by two‐dimensional gel electrophoresis , 2006, Proteomics.

[44]  M. Rossignol,et al.  MS characterization of multiple forms of alpha‐amylase in human saliva , 2005, Proteomics.

[45]  J. Duarte,et al.  Analysis of the human saliva proteome , 2005, Expert review of proteomics.

[46]  D. T. Wong,et al.  Large‐scale identification of proteins in human salivary proteome by liquid chromatography/mass spectrometry and two‐dimensional gel electrophoresis‐mass spectrometry , 2005, Proteomics.

[47]  S. Fisher,et al.  Toward defining the human parotid gland salivary proteome and peptidome: identification and characterization using 2D SDS-PAGE, ultrafiltration, HPLC, and mass spectrometry. , 2005, Biochemistry.

[48]  Rovshan G Sadygov,et al.  Large-scale database searching using tandem mass spectra: Looking up the answer in the back of the book , 2004, Nature Methods.

[49]  Chun-Ming Huang,et al.  Comparative proteomic analysis of human whole saliva. , 2004, Archives of oral biology.

[50]  D. Wong,et al.  Differentially expressed protein markers in human submandibular and sublingual secretions. , 2004, International journal of oncology.

[51]  L. David,et al.  Two-dimensional liquid chromatography study of the human whole saliva proteome. , 2004, Journal of proteome research.

[52]  Rui Vitorino,et al.  Identification of human whole saliva protein components using proteomics , 2004, Proteomics.

[53]  T. Cabras,et al.  Identification of the human salivary cystatin complex by the coupling of high‐performance liquid chromatography and ion‐trap mass spectrometry , 2003, Proteomics.

[54]  L. Tabak,et al.  Characterization of Low-molecular-weight Peptides in Human Parotid Saliva , 1995, Journal of dental research.

[55]  J. Yates,et al.  An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database , 1994, Journal of the American Society for Mass Spectrometry.

[56]  M. Humphreys-Beher,et al.  Characterization of the synthesis and secretion of transforming growth factor-alpha from salivary glands and saliva. , 1994, Endocrinology.

[57]  T. Lindahl Instability and decay of the primary structure of DNA , 1993, Nature.

[58]  J. Barton,et al.  Immunosenescence and mucosal immunity: significant effects of old age on secretory IgA concentrations and intraepithelial lymphocyte counts. , 1992, Gut.

[59]  M. Navazesh,et al.  Comparison of Whole Saliva Flow Rates and Mucin Concentrations in Healthy Caucasian Young and Aged Adults , 1992, Journal of dental research.

[60]  L. Tabak,et al.  Age-related Changes in Mucins from Human Whole Saliva , 1991, Journal of dental research.

[61]  P. Fox,et al.  Secretion of antimicrobial proteins from the parotid glands of different aged healthy persons. , 1987, Journal of gerontology.

[62]  W. Distler,et al.  Biologically-active, Low-molecular-weight Peptides in Human Saliva , 1987, Journal of dental research.

[63]  D. Laufer,et al.  The salivary flow rate and composition of whole and parotid resting and stimulated saliva in young and old healthy subjects. , 1986, Biochemical medicine and metabolic biology.

[64]  I. Mandel Oral Defenses and Disease: Salivary Gland Function 1 , 1984 .

[65]  B. Baum,et al.  Exocrine protein secretion from human parotid glands during aging: stable release of the acidic proline-rich proteins. , 1982, Journal of gerontology.

[66]  J. E. Kirk The phosphoglucomutase, phosphoglyceric acid mutase, and phosphomannose isomerase activities of arterial tissue in individuals of various ages. , 1966, Journal of gerontology.

[67]  S. Toennes,et al.  Screening for drugs of abuse in oral fluid--correlation of analysis results with serum in forensic cases. , 2005, Journal of analytical toxicology.

[68]  M. Levine,et al.  Salivary α-Amylase: Role in Dental Plaque and Caries Formation , 1993 .

[69]  L. Tabak,et al.  Immunochemical quantitation of alpha-amylase and secretory IgA in parotid saliva from people of various ages. , 1987, Archives of oral biology.