From Minimax Shrinkage Estimation to Minimax Shrinkage Prediction

In a remarkable series of papers beginning in 1956, Charles Stein set the stage for the future development of minimax shrinkage estimators of a multivariate normal mean under quadratic loss. More recently, parallel developments have seen the emergence of minimax shrinkage estimators of multivariate normal predictive densities under Kullback--Leibler risk. We here describe these parallels emphasizing the focus on Bayes procedures and the derivation of the superharmonic conditions for minimaxity as well as further developments of new minimax shrinkage predictive density estimators including multiple shrinkage estimators, empirical Bayes estimators, normal linear model regression estimators and nonparametric regression estimators.

[1]  B. Levit,et al.  On minimax filtering over ellipsoids , 1995 .

[2]  M. Wells,et al.  On the construction of Bayes minimax estimators , 1998 .

[3]  Malay Ghosh,et al.  Estimation, prediction and the Stein phenomenon under divergence loss , 2008 .

[4]  Feng Liang,et al.  Exact minimax strategies for predictive density estimation, data compression, and model selection , 2002, IEEE Transactions on Information Theory.

[5]  C. Stein Estimation of the Mean of a Multivariate Normal Distribution , 1981 .

[6]  Fumiyasu Komaki,et al.  Shrinkage priors for Bayesian prediction , 2006, math/0607021.

[7]  Edward I. George,et al.  Admissible predictive density estimation , 2008 .

[8]  Feng Liang,et al.  Improved minimax predictive densities under Kullback-Leibler loss , 2006 .

[9]  L. Brown Admissible Estimators, Recurrent Diffusions, and Insoluble Boundary Value Problems , 1971 .

[10]  Feng Liang,et al.  Asymptotic minimax risk of predictive density estimation for non-parametric regression , 2010, 1010.2064.

[11]  C. Stein Confidence Sets for the Mean of a Multivariate Normal Distribution , 1962 .

[12]  Fumiyasu Komaki,et al.  A shrinkage predictive distribution for multivariate Normal observables , 2001 .

[13]  G. D. Murray,et al.  NOTE ON ESTIMATION OF PROBABILITY DENSITY FUNCTIONS , 1977 .

[14]  E. George A formal bayes multiple shrinkage estimator , 1986 .

[15]  W. Strawderman Proper Bayes Minimax Estimators of the Multivariate Normal Mean , 1971 .

[16]  E. George Combining Minimax Shrinkage Estimators , 1986 .

[17]  Kengo Kato Improved prediction for a multivariate normal distribution with unknown mean and variance , 2009 .

[18]  R. Faith Minimax Bayes estimators of a multivariate normal mean , 1978 .

[19]  H. Akaike A new look at the Bayes procedure , 1978 .

[20]  Stergios B. Fotopoulos,et al.  All of Nonparametric Statistics , 2007, Technometrics.

[21]  Fumiyasu Komaki,et al.  Bayesian shrinkage prediction for the regression problem , 2007 .

[22]  Xinyi Xu,et al.  Empirical Bayes predictive densities for high-dimensional normal models , 2011, J. Multivar. Anal..

[23]  Fumiyasu Komaki,et al.  Bayesian predictive densities based on superharmonic priors for the 2-dimensional Wishart model , 2009, J. Multivar. Anal..

[24]  Donna L. Mohr,et al.  Multiple Regression , 2002, Encyclopedia of Autism Spectrum Disorders.

[25]  C. Stein,et al.  Estimation with Quadratic Loss , 1992 .

[26]  Fumiyasu Komaki,et al.  Simultaneous prediction of independent Poisson observables , 2004 .

[27]  PREDICTIVE DENSITY ESTIMATION FOR MULTIPLE REGRESSION , 2008, Econometric Theory.

[28]  E. George Minimax Multiple Shrinkage Estimation , 1986 .

[29]  Lianfen Qian,et al.  Nonparametric Curve Estimation: Methods, Theory, and Applications , 1999, Technometrics.

[30]  B. Levit,et al.  Asymptotically Minimax Nonparametric Regression in L2 , 1996 .

[31]  J. Neyman,et al.  INADMISSIBILITY OF THE USUAL ESTIMATOR FOR THE MEAN OF A MULTIVARIATE NORMAL DISTRIBUTION , 2005 .

[32]  Vee Ming Ng,et al.  On the estimation of parametric density functions , 1980 .

[33]  J. Aitchison Goodness of prediction fit , 1975 .

[34]  J. Steele Stochastic Calculus and Financial Applications , 2000 .