The Compositional Structure of Multipartite Quantum Entanglement

Multipartite quantum states constitute a (if not the) key resource for quantum computations and protocols. However obtaining a generic, structural understanding of entanglement in N-qubit systems is a long-standing open problem in quantum computer science. Here we show that multipartite quantum entanglement admits a compositional structure, and hence is subject to modern computer science methods. Recall that two N-qubit states are SLOCC-equivalent if they can be inter-converted by stochastic local (quantum) operations and classical communication. There are only two SLOCC-equivalence classes of genuinely entangled 3-qubit states, the GHZ-class and the W-class, and we show that these exactly correspond with two kinds of internal commutative Frobenius algebras on C2 in the symmetric monoidal category of Hilbert spaces and linear maps, namely 'special' ones and 'anti-special' ones. Within the graphical language of symmetric monoidal categories, the distinction between 'special' and 'anti-special' is purely topological, in terms of 'connected' vs. 'disconnected'. These GHZ and W Frobenius algebras form the primitives of a graphical calculus which is expressive enough to generate and reason about representatives of arbitrary N-qubit states. This calculus refines the graphical calculus of complementary observables in [5, ICALP'08], which has already shown itself to have many applications and admit automation. Our result also induces a generalised graph state paradigm for measurement-based quantum computing.

[1]  S. Lane Categories for the Working Mathematician , 1971 .

[2]  Simon Perdrix,et al.  Rewriting Measurement-Based Quantum Computations with Generalised Flow , 2010, ICALP.

[3]  G. M. Kelly,et al.  Coherence for compact closed categories , 1980 .

[4]  B. Moor,et al.  Four qubits can be entangled in nine different ways , 2001, quant-ph/0109033.

[5]  Joachim Kock,et al.  Frobenius Algebras and 2-D Topological Quantum Field Theories , 2004 .

[6]  Simon Perdrix,et al.  Environment and Classical Channels in Categorical Quantum Mechanics , 2010, CSL.

[7]  Samson Abramsky,et al.  A categorical semantics of quantum protocols , 2004, Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science, 2004..

[8]  Simon Perdrix,et al.  Graph States and the Necessity of Euler Decomposition , 2009, CiE.

[9]  Bill Edwards,et al.  Phase Groups and the Origin of Non-locality for Qubits , 2010, QPL@MFPS.

[10]  Isaac L. Chuang,et al.  Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations , 1999, Nature.

[11]  Peter Selinger Finite Dimensional Hilbert Spaces are Complete for Dagger Compact Closed Categories (Extended Abstract) , 2011, Electron. Notes Theor. Comput. Sci..

[12]  I. Chuang,et al.  Quantum Teleportation is a Universal Computational Primitive , 1999, quant-ph/9908010.

[13]  L. Lamata,et al.  Inductive entanglement classification of four qubits under stochastic local operations and classical communication , 2007 .

[14]  B. Coecke,et al.  Classical and quantum structuralism , 2009, 0904.1997.

[15]  J. Cirac,et al.  Three qubits can be entangled in two inequivalent ways , 2000, quant-ph/0005115.

[16]  Bob Coecke,et al.  Interacting quantum observables: categorical algebra and diagrammatics , 2009, ArXiv.

[17]  Yongjun Wang,et al.  Graphical Calculus for Quantum Key Distribution (Extended Abstract) , 2011, Electron. Notes Theor. Comput. Sci..

[18]  B. De Moor,et al.  Local unitary versus local Clifford equivalence of stabilizer states , 2005 .

[19]  E. Solano,et al.  Entanglement equivalence of N-qubit symmetric states , 2009, 0908.0886.

[20]  V. Paulsen Completely Bounded Maps and Operator Algebras: Contents , 2003 .

[21]  Peter Selinger,et al.  Finite Dimensional Hilbert Spaces are Complete for Dagger Compact Closed Categories (Extended Abstract) , 2011, QPL/DCM@ICALP.

[22]  P. Selinger A Survey of Graphical Languages for Monoidal Categories , 2009, 0908.3347.

[23]  Bob Coecke,et al.  Interacting Quantum Observables , 2008, ICALP.

[24]  A. Carboni,et al.  Cartesian bicategories I , 1987 .

[25]  A. Shimony,et al.  Bell’s theorem without inequalities , 1990 .

[26]  M. Duff,et al.  Black Holes, Qubits and Octonions , 2008, 0809.4685.

[27]  E. Kashefi,et al.  Generalized flow and determinism in measurement-based quantum computation , 2007, quant-ph/0702212.

[28]  Dusko Pavlovic,et al.  Quantum measurements without sums , 2007 .

[29]  E. Solano,et al.  Inductive Entanglement Classification of Four Qubits under SLOCC , 2006 .

[30]  J. Eisert,et al.  Entanglement in Graph States and its Applications , 2006, quant-ph/0602096.

[31]  D. Browne,et al.  Computational power of correlations. , 2008, Physical review letters.

[32]  Jianxin Chen,et al.  The LU-LC conjecture is false , 2007, Quantum Inf. Comput..

[33]  D. Markham,et al.  Graph states for quantum secret sharing , 2008, 0808.1532.

[34]  A. Joyal,et al.  The geometry of tensor calculus, I , 1991 .

[35]  Enrique Solano,et al.  Inductive classification of multipartite entanglement under stochastic local operations and classical communication , 2006 .

[36]  Ross Street Quantum groups: a path to current algebra , 2007 .

[37]  E. Solano,et al.  Inductive classification of multipartite entanglement under SLOCC , 2006, quant-ph/0603243.

[38]  Prakash Panangaden,et al.  The computational power of the W And GHZ States , 2006, Quantum Inf. Comput..

[39]  F. Verstraete,et al.  Exploiting translational invariance in matrix product state simulations of spin chains with periodic boundary conditions , 2010, 1005.5195.