The Compositional Structure of Multipartite Quantum Entanglement
暂无分享,去创建一个
[1] S. Lane. Categories for the Working Mathematician , 1971 .
[2] Simon Perdrix,et al. Rewriting Measurement-Based Quantum Computations with Generalised Flow , 2010, ICALP.
[3] G. M. Kelly,et al. Coherence for compact closed categories , 1980 .
[4] B. Moor,et al. Four qubits can be entangled in nine different ways , 2001, quant-ph/0109033.
[5] Joachim Kock,et al. Frobenius Algebras and 2-D Topological Quantum Field Theories , 2004 .
[6] Simon Perdrix,et al. Environment and Classical Channels in Categorical Quantum Mechanics , 2010, CSL.
[7] Samson Abramsky,et al. A categorical semantics of quantum protocols , 2004, Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science, 2004..
[8] Simon Perdrix,et al. Graph States and the Necessity of Euler Decomposition , 2009, CiE.
[9] Bill Edwards,et al. Phase Groups and the Origin of Non-locality for Qubits , 2010, QPL@MFPS.
[10] Isaac L. Chuang,et al. Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations , 1999, Nature.
[11] Peter Selinger. Finite Dimensional Hilbert Spaces are Complete for Dagger Compact Closed Categories (Extended Abstract) , 2011, Electron. Notes Theor. Comput. Sci..
[12] I. Chuang,et al. Quantum Teleportation is a Universal Computational Primitive , 1999, quant-ph/9908010.
[13] L. Lamata,et al. Inductive entanglement classification of four qubits under stochastic local operations and classical communication , 2007 .
[14] B. Coecke,et al. Classical and quantum structuralism , 2009, 0904.1997.
[15] J. Cirac,et al. Three qubits can be entangled in two inequivalent ways , 2000, quant-ph/0005115.
[16] Bob Coecke,et al. Interacting quantum observables: categorical algebra and diagrammatics , 2009, ArXiv.
[17] Yongjun Wang,et al. Graphical Calculus for Quantum Key Distribution (Extended Abstract) , 2011, Electron. Notes Theor. Comput. Sci..
[18] B. De Moor,et al. Local unitary versus local Clifford equivalence of stabilizer states , 2005 .
[19] E. Solano,et al. Entanglement equivalence of N-qubit symmetric states , 2009, 0908.0886.
[20] V. Paulsen. Completely Bounded Maps and Operator Algebras: Contents , 2003 .
[21] Peter Selinger,et al. Finite Dimensional Hilbert Spaces are Complete for Dagger Compact Closed Categories (Extended Abstract) , 2011, QPL/DCM@ICALP.
[22] P. Selinger. A Survey of Graphical Languages for Monoidal Categories , 2009, 0908.3347.
[23] Bob Coecke,et al. Interacting Quantum Observables , 2008, ICALP.
[24] A. Carboni,et al. Cartesian bicategories I , 1987 .
[25] A. Shimony,et al. Bell’s theorem without inequalities , 1990 .
[26] M. Duff,et al. Black Holes, Qubits and Octonions , 2008, 0809.4685.
[27] E. Kashefi,et al. Generalized flow and determinism in measurement-based quantum computation , 2007, quant-ph/0702212.
[28] Dusko Pavlovic,et al. Quantum measurements without sums , 2007 .
[29] E. Solano,et al. Inductive Entanglement Classification of Four Qubits under SLOCC , 2006 .
[30] J. Eisert,et al. Entanglement in Graph States and its Applications , 2006, quant-ph/0602096.
[31] D. Browne,et al. Computational power of correlations. , 2008, Physical review letters.
[32] Jianxin Chen,et al. The LU-LC conjecture is false , 2007, Quantum Inf. Comput..
[33] D. Markham,et al. Graph states for quantum secret sharing , 2008, 0808.1532.
[34] A. Joyal,et al. The geometry of tensor calculus, I , 1991 .
[35] Enrique Solano,et al. Inductive classification of multipartite entanglement under stochastic local operations and classical communication , 2006 .
[36] Ross Street. Quantum groups: a path to current algebra , 2007 .
[37] E. Solano,et al. Inductive classification of multipartite entanglement under SLOCC , 2006, quant-ph/0603243.
[38] Prakash Panangaden,et al. The computational power of the W And GHZ States , 2006, Quantum Inf. Comput..
[39] F. Verstraete,et al. Exploiting translational invariance in matrix product state simulations of spin chains with periodic boundary conditions , 2010, 1005.5195.