Accurate keyframe selection and keypoint tracking for robust visual odometry

This paper presents a novel stereo visual odometry (VO) framework based on structure from motion, where a robust keypoint tracking and matching is combined with an effective keyframe selection strategy. In order to track and find correct feature correspondences a robust loop chain matching scheme on two consecutive stereo pairs is introduced. Keyframe selection is based on the proportion of features with high temporal disparity. This criterion relies on the observation that the error in the pose estimation propagates from the uncertainty of 3D points—higher for distant points, that have low 2D motion. Comparative results based on three VO datasets show that the proposed solution is remarkably effective and robust even for very long path lengths.

[1]  Jan-Michael Frahm,et al.  Online environment mapping , 2011, CVPR 2011.

[2]  Friedrich Fraundorfer,et al.  Visual Odometry Part I: The First 30 Years and Fundamentals , 2022 .

[3]  Bernhard P. Wrobel,et al.  Multiple View Geometry in Computer Vision , 2001 .

[4]  Ivan Petrovic,et al.  Stereo odometry based on careful feature selection and tracking , 2015, 2015 European Conference on Mobile Robots (ECMR).

[5]  Berthold K. P. Horn,et al.  Closed-form solution of absolute orientation using unit quaternions , 1987 .

[6]  Andrew W. Fitzgibbon,et al.  Bundle Adjustment - A Modern Synthesis , 1999, Workshop on Vision Algorithms.

[7]  Paul Newman,et al.  Detecting Loop Closure with Scene Sequences , 2007, International Journal of Computer Vision.

[8]  Andreas Geiger,et al.  Are we ready for autonomous driving? The KITTI vision benchmark suite , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[9]  D. Tegolo,et al.  Improving Harris corner selection strategy , 2011 .

[10]  Pascal Getreuer,et al.  A Survey of Gaussian Convolution Algorithms , 2013, Image Process. Line.

[11]  Hauke Strasdat,et al.  Visual SLAM: Why filter? , 2012, Image Vis. Comput..

[12]  Fabio Bellavia,et al.  Robust Selective Stereo SLAM without Loop Closure and Bundle Adjustment , 2013, ICIAP.

[13]  Fabio Bellavia,et al.  SAMSLAM: Simulated Annealing Monocular SLAM , 2013, CAIP.

[14]  Marc Pollefeys,et al.  RS-SLAM: RANSAC sampling for visual FastSLAM , 2011, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[15]  Julius Ziegler,et al.  StereoScan: Dense 3d reconstruction in real-time , 2011, 2011 IEEE Intelligent Vehicles Symposium (IV).

[16]  James R. Bergen,et al.  Visual odometry , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[17]  Robert C. Bolles,et al.  Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography , 1981, CACM.

[18]  Michel Dhome,et al.  Real Time Localization and 3D Reconstruction , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[19]  David W. Murray,et al.  Improving the Agility of Keyframe-Based SLAM , 2008, ECCV.

[20]  Michael Felsberg,et al.  Robust stereo visual odometry from monocular techniques , 2015, 2015 IEEE Intelligent Vehicles Symposium (IV).

[21]  Hauke Strasdat,et al.  Scale Drift-Aware Large Scale Monocular SLAM , 2010, Robotics: Science and Systems.

[22]  Alexandru Tupan,et al.  Triangulation , 1997, Comput. Vis. Image Underst..

[23]  Winston Churchill,et al.  The New College Vision and Laser Data Set , 2009, Int. J. Robotics Res..

[24]  Wolfram Burgard,et al.  A visual odometry framework robust to motion blur , 2009, 2009 IEEE International Conference on Robotics and Automation.

[25]  Olivier Stasse,et al.  MonoSLAM: Real-Time Single Camera SLAM , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[26]  Domenico Tegolo,et al.  Keypoint descriptor matching with context-based orientation estimation , 2014, Image Vis. Comput..

[27]  Akihiro Yamamoto,et al.  Visual Odometry by Multi-frame Feature Integration , 2013, 2013 IEEE International Conference on Computer Vision Workshops.

[28]  Kurt Konolige,et al.  Double window optimisation for constant time visual SLAM , 2011, 2011 International Conference on Computer Vision.

[29]  G. Klein,et al.  Parallel Tracking and Mapping for Small AR Workspaces , 2007, 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality.

[30]  Andrew J. Davison,et al.  Real-time simultaneous localisation and mapping with a single camera , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[31]  R. Hartley Triangulation, Computer Vision and Image Understanding , 1997 .

[32]  Ian D. Reid,et al.  RSLAM: A System for Large-Scale Mapping in Constant-Time Using Stereo , 2011, International Journal of Computer Vision.

[33]  Andrew J. Davison,et al.  DTAM: Dense tracking and mapping in real-time , 2011, 2011 International Conference on Computer Vision.

[34]  Javier Civera,et al.  Unified Inverse Depth Parametrization for Monocular SLAM , 2006, Robotics: Science and Systems.

[35]  Lina María Paz,et al.  Large-Scale 6-DOF SLAM With Stereo-in-Hand , 2008, IEEE Transactions on Robotics.

[36]  Fukui Kazuhiro,et al.  Realistic CG Stereo Image Dataset With Ground Truth Disparity Maps , 2012 .