Quantum Dissipative Dynamics (QDD): A real-time real-space approach to far-off-equilibrium dynamics in finite electron systems

Abstract In this paper, we present “QDD” (Quantum Dissipative Dynamics), a code package for simulating the dynamics of electrons and ions in finite electron systems (atoms, molecules, clusters) under the influence of external electromagnetic fields. Electron emission is properly accounted for. The novel feature of the present code is that it also covers the description of dissipative dynamics induced by dynamical correlations generated by electron-electron collisions. The paper reviews the underlying theoretical as well as numerical methods and demonstrates the code's capabilities on a selection of typical examples. Program summary Program Title: QDD CPC Library link to program files: https://doi.org/10.17632/jpwzm9knmb.1 Licensing provisions: GPLv3 Programming language: Fortran 90 (with Fortran 2008 standard) Supplementary material: User Manual, input and output files Nature of problem: The QDD code serves to simulate the dynamics of finite electron systems (atoms, molecules, clusters) excited by strong electromagnetic fields as delivered by lasers or highly charged ions. Basis of the description is Time-Dependent Density Functional Theory (TDDFT) at the level of the Time-Dependent Local-Density Approximation (TDLDA) augmented by an approximate Self-Interaction Correction (SIC), the latter being crucial for proper description of electron emission. The novel feature of the present code is that it allows one to track the dissipative dynamics induced by dynamical correlations from the earliest times of excitation on. This is done here at a fully quantum mechanical level within the Relaxation-Time Approximation (RTA). Electron dynamics is also coupled to ionic motion treated by classical molecular dynamics. Solution method: The numerical representation uses a 3D coordinate-space grid for electronic wave functions and fields. The kinetic energy operator is evaluated in momentum space connected by a Fast Fourier Transform (FFT). Standard schemes for electronic ground state, ionic ground state, and propagation of TDLDA in real time as well as ionic dynamics are used. Electron emission is enabled by absorbing boundary conditions using a mask function near the boundaries. The time evolution of dissipation (by RTA) is evaluated in a large space of occupied and unoccupied single-electron states. Additional comments including restrictions and unusual features: Only the actual computing hardware (RAM, number of nodes on board) limits the system size which can be treated. The code package allows sequential and parallel (OpenMP) computation. The simulation can be continued from a previously saved dynamical configuration.

[1]  Congzhang Gao,et al.  Progress towards a realistic theoretical description ofC60photoelectron-momentum imaging experiments using time-dependent density-functional theory , 2015 .

[2]  F. Jensen Introduction to Computational Chemistry , 1998 .

[3]  C. Toepffer,et al.  Dissipative linear response in a fermion system , 1988 .

[4]  Othmar Koch,et al.  Correlated multielectron systems in strong laser fields: A multiconfiguration time-dependent Hartree-Fock approach , 2005 .

[5]  Carsten A. Ullrich,et al.  Time-Dependent Density-Functional Theory: Concepts and Applications , 2012 .

[6]  J. Rost,et al.  Mechanisms of cluster ionization in strong laser pulses , 2006 .

[7]  P. Reinhard,et al.  DFT studies of ionic vibrations in Na clusters , 2002 .

[8]  P. Reinhard,et al.  Stochastic TDHF in an exactly solvable model , 2016, 1607.03648.

[9]  M. Feit,et al.  Solution of the Schrödinger equation by a spectral method , 1982 .

[10]  S. Mandt,et al.  Fermionic transport and out-of-equilibrium dynamics in a homogeneous Hubbard model with ultracold atoms , 2012, Nature Physics.

[11]  P. Reinhard,et al.  Time dependent DFT in natural orbitals , 2017 .

[12]  P. Balcou,et al.  Observation of a Train of Attosecond Pulses from High Harmonic Generation , 2001, Science.

[13]  L. Reichl A modern course in statistical physics , 1980 .

[14]  R. Leeuwen,et al.  LETTER TO THE EDITOR: Electron correlation effects in the double ionization of He , 1998 .

[15]  P. Reinhard,et al.  The impact of dissipation on plasmonic versus non-collective excitation , 2018 .

[16]  P. Reinhard,et al.  Semi‐classical description of ionic and electronic dynamics in metal clusters , 2002, Annalen der Physik.

[17]  R. Dreizler,et al.  Density-Functional Theory , 1990 .

[18]  P. Reinhard,et al.  On stochastic approaches of nuclear dynamics , 1996 .

[19]  Igor E. Mazets,et al.  Experimental observation of a generalized Gibbs ensemble , 2014, Science.

[20]  C. Ullrich,et al.  Ionization of metal clusters by ions in the Fermi velocity range , 1998 .

[21]  Matthias Brack,et al.  The physics of simple metal clusters: self-consistent jellium model and semiclassical approaches , 1993 .

[22]  Daniel de Florian,et al.  Phenomenology of forward hadrons in deep inelastic scattering: Fracture functions and its Q 2 evolution , 1997 .

[23]  A. Gordon,et al.  Configuration-interaction-based time-dependent orbital approach for ab initio treatment of electronic dynamics in a strong optical laser field , 2006 .

[24]  Koopmans' condition in self-interaction-corrected density-functional theory , 2013, 1308.4253.

[25]  P. Reinhard,et al.  Fingerprints of level depletion in the photoelectron spectra of small Na clusters in the ultraviolet domain , 2012 .

[26]  Radu Balescu,et al.  Equilibrium and Non-Equilibrium Statistical Mechanics , 1975 .

[27]  Á. Rubio,et al.  Response properties of sodium clusters within a jellium-like model with finite surface thickness , 1991 .

[28]  Observation of molecular dipole excitations by attosecond self-streaking , 2015, 1505.05857.

[29]  K. Ishikawa,et al.  High-harmonic spectra from time-dependent two-particle reduced-density-matrix theory , 2016, 1611.00888.

[30]  A density functional theory study of Na(H2O)n: an example of the impact of self-interaction corrections , 2014 .

[31]  P. Reinhard,et al.  A collisional extension of time-dependent Hartree–Fock , 2016 .

[32]  P. Reinhard,et al.  Calculation of photoelectron spectra: A mean-field-based scheme , 2013 .

[33]  D. Hochstuhl,et al.  Time-dependent restricted-active-space configuration-interaction method for the photoionization of many-electron atoms , 2012, 1207.5693.

[34]  G. F. Bertsch,et al.  Time-dependent density functional theory for strong electromagnetic fields in crystalline solids , 2011, 1112.2291.

[35]  George F. Bertsch,et al.  A guide to microscopic models for intermediate energy heavy ion collisions , 1988 .

[36]  M. Bonitz Quantum Kinetic Theory , 2015 .

[37]  Schafer,et al.  Calculation of photoemission from atoms subject to intense laser fields. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[38]  B. Lundqvist,et al.  Exchange and correlation in atoms, molecules, and solids by the spin-density-functional formalism , 1976 .

[39]  Paul-Gerhard Reinhard,et al.  Comparison of coordinate-space techniques in nuclear mean-field calculations , 1992 .

[40]  L. Verlet Computer "Experiments" on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules , 1967 .

[41]  Krieger,et al.  Construction and application of an accurate local spin-polarized Kohn-Sham potential with integer discontinuity: Exchange-only theory. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[42]  Momentum distributions in time-dependent density-functional theory : Product-phase approximation for nonsequential double ionization in strong laser fields , 2007, 0704.1423.

[43]  J. C. Slater A Simplification of the Hartree-Fock Method , 1951 .

[44]  M. R. C. McDowell,et al.  Charge Exchange and the Theory of Ion-Atom Collisions , 1992 .

[45]  P. Wopperer,et al.  Electrons as probes of dynamics in molecules and clusters : a contribution from Time Dependent Density Functional Theory , 2014, 1407.4965.

[46]  M. Brack,et al.  Triaxially deformed sodium clusters in a self-consistent microscopic description , 1991 .

[47]  Paul-Gerhard Reinhard,et al.  Spectral Signals from Electronic Dynamics in Sodium Clusters , 1997 .

[48]  P. Reinhard,et al.  THEORETICAL ESTIMATION OF THE IMPORTANCE OF TWO-ELECTRON COLLISIONS FOR RELAXATION IN METAL CLUSTERS , 1998 .

[49]  C. Cercignani The Boltzmann equation and its applications , 1988 .

[50]  John P. Perdew,et al.  Accurate Density Functional with Correct Formal Properties: A Step Beyond the Generalized Gradient Approximation , 1999 .

[51]  Rick Trebino,et al.  Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating , 1997 .

[52]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[53]  Paul-Gerhard Reinhard,et al.  NONLINEAR ELECTRON DYNAMICS IN METAL CLUSTERS , 2000 .

[54]  A. Ono,et al.  Antisymmetrized molecular dynamics for heavy ion collisions , 2004 .

[55]  J. Schnack,et al.  Fermionic Molecular Dynamics , 1990 .

[56]  Dissipation and energy balance in electronic dynamics of Na clusters , 2017, 1701.09024.

[57]  Á. Rubio,et al.  Time-Dependent Thermal Transport Theory. , 2014, Physical review letters.

[58]  Michael W. Schmidt,et al.  The construction and interpretation of MCSCF wavefunctions. , 1998, Annual review of physical chemistry.

[59]  Wang,et al.  Accurate and simple analytic representation of the electron-gas correlation energy. , 1992, Physical review. B, Condensed matter.

[60]  T. Ishikawa,et al.  Second-order autocorrelation of XUV FEL pulses via time resolved two-photon single ionization of He. , 2011, Optics express.

[61]  Loren Greenman,et al.  Implementation of the time-dependent configuration-interaction singles method for atomic strong-field processes , 2010 .

[62]  A. Messiah Quantum Mechanics , 1961 .

[63]  P. Reinhard,et al.  On the exact treatment of time-dependent self-interaction correction , 2008, 0811.2856.

[64]  P. Reinhard,et al.  Enhanced energy absorption through dissipation in metal clusters , 2018, Journal of Physics: Conference Series.

[65]  K. Meiwes-Broer,et al.  PLASMON-ENHANCED MULTI-IONIZATION OF SMALL METAL CLUSTERS IN STRONG FEMTOSECOND LASER FIELDS , 1999 .

[66]  Teter,et al.  Separable dual-space Gaussian pseudopotentials. , 1996, Physical review. B, Condensed matter.

[67]  M. Strayer,et al.  Role of boundary conditions in dynamic studies of nuclear giant resonances and collisions. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[68]  K. Ishikawa,et al.  Time-dependent complete-active-space self-consistent-field method for atoms: Application to high-order harmonic generation , 2016, 1605.00703.

[69]  Stringari,et al.  Rotational magnetic state in deformed metal clusters. , 1989, Physical review letters.

[70]  D. Pines,et al.  The theory of quantum liquids , 1968 .

[71]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[72]  N. Bohr TRANSMUTATIONS OF ATOMIC NUCLEI. , 1937, Science.

[73]  Campbell,et al.  Photoionization and fragmentation dynamics of C60. , 1994, Physical review letters.

[74]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[75]  William H. Press,et al.  Numerical recipes , 1990 .

[76]  R. T. Sharp,et al.  A Variational Approach to the Unipotential Many-Electron Problem , 1953 .

[77]  G. Scuseria,et al.  Hybrid functionals based on a screened Coulomb potential , 2003 .

[78]  Paul-Gerhard Reinhard,et al.  A comparative study of Hartree-Fock iteration techniques , 1982 .

[79]  P. Reinhard,et al.  Non-equilibrium quantum dynamics with collisional correlations , 2014 .

[80]  R. Martin,et al.  Interacting Electrons: Theory and Computational Approaches , 2016 .

[81]  P. Reinhard,et al.  Non-adiabatic effects in the irradiation of ethylene , 2010, 1002.3699.

[82]  R. Leeuwen,et al.  Violation of the zero-force theorem in the time-dependent Krieger-Li-Iafrate approximation , 2007, 0705.1295.

[83]  S. Goedecker,et al.  Relativistic separable dual-space Gaussian pseudopotentials from H to Rn , 1998, cond-mat/9803286.

[84]  M. Colonna,et al.  Bifurcations in Boltzmann–Langevin one body dynamics for fermionic systems , 2013, 1302.0239.

[85]  J. D. Talman,et al.  Optimized effective atomic central potential , 1976 .

[86]  F Remacle,et al.  An electronic time scale in chemistry. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[87]  P. Reinhard,et al.  A quantum relaxation-time approximation for finite fermion systems , 2014, 1409.4233.

[88]  E. Gross,et al.  Time-dependent density functional theory. , 2004, Annual review of physical chemistry.

[89]  L. Kronik,et al.  Orbital-dependent density functionals: Theory and applications , 2008 .

[90]  R. Dreizler,et al.  Density Functional Theory: An Approach to the Quantum Many-Body Problem , 1991 .

[91]  A. Zunger,et al.  Self-interaction correction to density-functional approximations for many-electron systems , 1981 .

[92]  Daniela Munteanu,et al.  Soft Errors: From Particles to Circuits , 2015 .

[93]  S. Kümmel,et al.  Structure and optic response of the Na9+ and Na55+ clusters , 1999 .

[94]  H. Reinhardt,et al.  Dissipative adiabatic mean field theory for large amplitude collective motion , 1986 .

[95]  P. Reinhard,et al.  On the inclusion of dissipation on top of mean-field approaches , 2018, The European Physical Journal B.

[96]  Meyer,et al.  Shape isomerism in sodium clusters with 10 <= Z <= 44: Jellium model with quadrupole, octupole, and hexadecapole deformations. , 1995, Physical Review B (Condensed Matter).

[97]  Niels Bohr,et al.  The Mechanism of nuclear fission , 1939 .

[98]  Reinhard,et al.  Impact of ionic motion on ionization of metal clusters under intense laser pulses , 2000, Physical review letters.

[99]  D. Hochstuhl,et al.  Time-dependent multiconfiguration methods for the numerical simulation of photoionization processes of many-electron atoms , 2014 .

[100]  Marc J. J. Vrakking,et al.  Attosecond molecular dynamics: fact or fiction? , 2014, Nature Photonics.

[101]  D. Koelling,et al.  Towards a Kohn-Sham potential via the optimized effective-potential method , 1984 .

[102]  J. Banavar,et al.  Computer Simulation of Liquids , 1988 .

[103]  N. D. Mermin,et al.  Lindhard Dielectric Function in the Relaxation-Time Approximation , 1970 .

[104]  P. Reinhard,et al.  Dynamics of clusters and molecules in contact with an environment , 2009, 0903.1004.

[105]  John Archibald Wheeler,et al.  NUCLEAR CONSTITUTION AND THE INTERPRETATION OF FISSION PHENOMENA , 1953 .

[106]  H. Reinhardt,et al.  Non-markovian treatment of collective motion in extended time-dependent mean-field theories , 1985 .

[107]  Yasushi Shinohara,et al.  Coherent phonon generation in time-dependent density functional theory , 2010 .

[108]  Joachim Ullrich,et al.  Cold Target Recoil Ion Momentum Spectroscopy: a &momentum microscope' to view atomic collision dynamics , 2000 .

[109]  P. Reinhard,et al.  Time-dependent density-functional theory with a self-interaction correction. , 2007, Physical review letters.

[110]  R. Leeuwen,et al.  Nonequilibrium Many-Body Theory of Quantum Systems , 2013 .

[111]  F. Gulminelli,et al.  The Boltzmann equation at the borderline. A decade of Monte Carlo simulations of a quantum kinetic equation , 1994 .

[112]  G. Bertsch,et al.  Ionization dynamics of simple metal clusters in intense fields by the Thomas-Fermi-Vlasov method , 2004 .

[113]  K. Meiwes-Broer,et al.  Laser-driven nonlinear cluster dynamics , 2009, 0904.2706.

[114]  Shunsuke A. Sato,et al.  Ab initio simulation of electrical currents induced by ultrafast laser excitation of dielectric materials. , 2014, Physical review letters.

[115]  S. Reimann,et al.  Triaxial shapes of sodium clusters , 1995 .

[116]  M. Orio,et al.  Density functional theory , 2009, Photosynthesis Research.

[117]  P. Wopperer,et al.  Orientation averaged angular distributions of photo-electrons from free Na clusters , 2010 .

[118]  E. Gross,et al.  Fundamentals of time-dependent density functional theory , 2012 .

[119]  A. R. Edmonds Angular Momentum in Quantum Mechanics , 1957 .

[120]  Wagner,et al.  Memory effects in relativistic heavy ion collisions. , 1994, Physical review. C, Nuclear physics.

[121]  F. Ardana-Lamas,et al.  Streaking of 43-attosecond soft-X-ray pulses generated by a passively CEP-stable mid-infrared driver. , 2017, Optics express.

[122]  Paul-Gerhard Reinhard,et al.  Introduction to Cluster Dynamics , 2003 .

[123]  Tolga N. V. Karsili,et al.  Photodissociation dynamics of the pyridinyl radical: Time-dependent quantum wave-packet calculations. , 2017, The Journal of chemical physics.

[124]  P. Reinhard,et al.  Angular distribution of electrons emitted from Na clusters , 2004 .

[125]  C. Legrand,et al.  Comparison of self-interaction-corrections for metal clusters , 2002 .

[126]  C. Jungreuthmayer,et al.  Ionization dynamics of extended multielectron systems , 2004 .

[127]  M. Mundt,et al.  Derivative discontinuities in time-dependent density-functional theory. , 2005, Physical Review Letters.

[128]  L. Cederbaum,et al.  Role of excited states in the splitting of a trapped interacting Bose-Einstein condensate by a time-dependent barrier. , 2006, Physical review letters.

[129]  Walt A. de Heer,et al.  The physics of simple metal clusters: experimental aspects and simple models , 1993 .