Spatiotemporal genomic architecture informs precision oncology in glioblastoma

Precision medicine in cancer proposes that genomic characterization of tumors can inform personalized targeted therapies. However, this proposition is complicated by spatial and temporal heterogeneity. Here we study genomic and expression profiles across 127 multisector or longitudinal specimens from 52 individuals with glioblastoma (GBM). Using bulk and single-cell data, we find that samples from the same tumor mass share genomic and expression signatures, whereas geographically separated, multifocal tumors and/or long-term recurrent tumors are seeded from different clones. Chemical screening of patient-derived glioma cells (PDCs) shows that therapeutic response is associated with genetic similarity, and multifocal tumors that are enriched with PIK3CA mutations have a heterogeneous drug-response pattern. We show that targeting truncal events is more efficacious than targeting private events in reducing the tumor burden. In summary, this work demonstrates that evolutionary inference from integrated genomic analysis in multisector biopsies can inform targeted therapeutic interventions for patients with GBM.

[1]  Debyani Chakravarty,et al.  Intratumoral heterogeneity of receptor tyrosine kinases EGFR and PDGFRA amplification in glioblastoma defines subpopulations with distinct growth factor response , 2012, Proceedings of the National Academy of Sciences.

[2]  Christian Hartmann,et al.  PIK3CA mutations in glioblastoma multiforme , 2005, Acta Neuropathologica.

[3]  Colin N. Dewey,et al.  RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome , 2011, BMC Bioinformatics.

[4]  H. Seol,et al.  MET signaling regulates glioblastoma stem cells. , 2012, Cancer research.

[5]  S. Gygi,et al.  Identification of a Unique TGF-β Dependent Molecular and Functional Signature in Microglia , 2013, Nature Neuroscience.

[6]  Gunnar E. Carlsson,et al.  Topology and data , 2009 .

[7]  Andrew J. Blumberg,et al.  Moduli Spaces of Phylogenetic Trees Describing Tumor Evolutionary Patterns , 2014, Brain Informatics and Health.

[8]  Facundo Mémoli,et al.  Topological Methods for the Analysis of High Dimensional Data Sets and 3D Object Recognition , 2007, PBG@Eurographics.

[9]  Ferenc A. Jolesz,et al.  Radiogenomic Mapping of Edema/Cellular Invasion MRI-Phenotypes in Glioblastoma Multiforme , 2011, PloS one.

[10]  G. Pilkington,et al.  CD44 mediates human glioma cell adhesion and invasion in vitro. , 1994, Cancer research.

[11]  Christopher A. Maher,et al.  ChimeraScan: a tool for identifying chimeric transcription in sequencing data , 2011, Bioinform..

[12]  C. Curtis,et al.  A Big Bang model of human colorectal tumor growth , 2015, Nature Genetics.

[13]  Stephen M. Moore,et al.  The Cancer Imaging Archive (TCIA): Maintaining and Operating a Public Information Repository , 2013, Journal of Digital Imaging.

[14]  Mauricio Reyes,et al.  Fully automatic GBM segmentation in the TCGA-GBM dataset: Prognosis and correlation with VASARI features , 2015, Scientific Reports.

[15]  Shawn M. Gillespie,et al.  Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma , 2014, Science.

[16]  Satoru Miyano,et al.  Mutational landscape and clonal architecture in grade II and III gliomas , 2015, Nature Genetics.

[17]  Franziska Michor,et al.  Most human non-GCIMP glioblastoma subtypes evolve from a common proneural-like precursor glioma. , 2014, Cancer cell.

[18]  T. Cloughesy,et al.  Glioblastoma: from molecular pathology to targeted treatment. , 2014, Annual review of pathology.

[19]  F. Zanella,et al.  Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial. , 2006, The Lancet. Oncology.

[20]  Shuguang Huang,et al.  Comparing statistical methods for quantifying drug sensitivity based on in vitro dose-response assays. , 2012, Assay and drug development technologies.

[21]  Sanjeeva Srivastava,et al.  Fluorescence-guided surgery of malignant gliomas based on 5-aminolevulinic acid: paradigm shifts but not a panacea , 2014, Nature Reviews Cancer.

[22]  J. Schlessinger,et al.  Signaling by Receptor Tyrosine Kinases , 1993 .

[23]  Wei Zhang,et al.  Genetic, epigenetic, and molecular landscapes of multifocal and multicentric glioblastoma , 2015, Acta Neuropathologica.

[24]  D. Brat,et al.  Transforming Fusions of FGFR and TACC Genes in Human Glioblastoma , 2012, Science.

[25]  V. P. Collins,et al.  Intratumor heterogeneity in human glioblastoma reflects cancer evolutionary dynamics , 2013, Proceedings of the National Academy of Sciences.

[26]  K. Kinzler,et al.  Lessons from Hereditary Colorectal Cancer , 1996, Cell.

[27]  F. Collins,et al.  The path to personalized medicine. , 2010, The New England journal of medicine.

[28]  Kenneth Hess,et al.  The influence of maximum safe resection of glioblastoma on survival in 1229 patients: Can we do better than gross-total resection? , 2016, Journal of neurosurgery.

[29]  Yuri Kotliarov,et al.  Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines. , 2006, Cancer cell.

[30]  Steven J. M. Jones,et al.  Molecular Profiling Reveals Biologically Discrete Subsets and Pathways of Progression in Diffuse Glioma , 2016, Cell.

[31]  J. Schlessinger,et al.  Cell Signaling by Receptor Tyrosine Kinases , 2000, Cell.

[32]  M. Bhasin,et al.  Bioinformatic identification and characterization of human endothelial cell-restricted genes , 2010, BMC Genomics.

[33]  D. Haussler,et al.  The Somatic Genomic Landscape of Glioblastoma , 2013, Cell.

[34]  A. McKenna,et al.  Absolute quantification of somatic DNA alterations in human cancer , 2012, Nature Biotechnology.

[35]  N. Leeds,et al.  Imaging patterns of multifocal gliomas. , 1993, European journal of radiology.

[36]  T. Wakabayashi,et al.  Current Trends in Targeted Therapies for Glioblastoma Multiforme , 2012, Neurology research international.

[37]  Emily J. Girard,et al.  Deep sequencing of multiple regions of glial tumors reveals spatial heterogeneity for mutations in clinically relevant genes , 2014, Genome Biology.

[38]  S. Gabriel,et al.  Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. , 2010, Cancer cell.

[39]  Diego G. Silva,et al.  Identification of T Cell-Restricted Genes, and Signatures for Different T Cell Responses, Using a Comprehensive Collection of Microarray Datasets1 , 2005, The Journal of Immunology.

[40]  Andrew Menzies,et al.  Subclonal diversification of primary breast cancer revealed by multiregion sequencing , 2015, Nature Medicine.

[41]  Jill S Barnholtz-Sloan,et al.  Whole-genome and multisector exome sequencing of primary and post-treatment glioblastoma reveals patterns of tumor evolution , 2015, Genome research.

[42]  Max Wintermark,et al.  Multicenter imaging outcomes study of The Cancer Genome Atlas glioblastoma patient cohort: imaging predictors of overall and progression-free survival. , 2015, Neuro-oncology.

[43]  Robert J Dempsey,et al.  Science Times , 2022 .

[44]  Raul Rabadan,et al.  The integrated landscape of driver genomic alterations in glioblastoma , 2013, Nature Genetics.

[45]  In-Hee Lee,et al.  Clonal evolution of glioblastoma under therapy , 2016, Nature Genetics.

[46]  Y. Xing,et al.  A Transcriptome Database for Astrocytes, Neurons, and Oligodendrocytes: A New Resource for Understanding Brain Development and Function , 2008, The Journal of Neuroscience.

[47]  Sotirios Giannopoulos,et al.  Diagnosis and Management of Multifocal Gliomas , 2011, Oncology.

[48]  Z. Naito,et al.  CD44 in human glioma correlates with histopathological grade and cell migration , 2012, Pathology international.

[49]  Rebecca A Betensky,et al.  Mosaic amplification of multiple receptor tyrosine kinase genes in glioblastoma. , 2011, Cancer cell.

[50]  Michael B. Stadler,et al.  PIK3CAH1047R induces multipotency and multi-lineage mammary tumours , 2015, Nature.

[51]  In-Hee Lee,et al.  Spatiotemporal Evolution of the Primary Glioblastoma Genome. , 2015, Cancer cell.

[52]  Alexander R. Abbas,et al.  Immune response in silico (IRIS): immune-specific genes identified from a compendium of microarray expression data , 2005, Genes and Immunity.