Implementation of dynamical nucleation theory with quantum potentials

A method is implemented within the context of dynamical nucleation theory in order to efficiently determine the ab initio water dimer evaporation rate constant. The drive for increased efficiency in a Monte Carlo methodology is established by the need to use relatively expensive quantum mechanical interaction potentials. A discussion is presented illustrating the theory, algorithm, and implementation of this method to the water dimer. Hartree–Fock and second order Møller–Plesset perturbation theories along with the Dang–Chang polarizable classical potential are utilized to determine the ab initio water dimer evaporation rate constant. © 2008 Wiley Periodicals, Inc. J Comput Chem, 2009

[1]  N. Metropolis,et al.  The Monte Carlo method. , 1949 .

[2]  David E. Bernholdt,et al.  High performance computational chemistry: An overview of NWChem a distributed parallel application , 2000 .

[3]  James C. Keck,et al.  Variational Theory of Chemical Reaction Rates Applied to Three‐Body Recombinations , 1960 .

[4]  Bruce J Palmer,et al.  Activation energies and potentials of mean force for water cluster evaporation. , 2008, The Journal of chemical physics.

[5]  P. C. Hariharan,et al.  The influence of polarization functions on molecular orbital hydrogenation energies , 1973 .

[6]  J. Penner,et al.  Quantifying and minimizing uncertainty of climate forcing by anthropogenic aerosols , 1994 .

[7]  Gregory K. Schenter,et al.  Understanding the sensitivity of nucleation kinetics: A case study on water , 2002 .

[8]  Eugene P. Wigner,et al.  The transition state method , 1938 .

[9]  David E. Woon,et al.  Gaussian basis sets for use in correlated molecular calculations. IV. Calculation of static electrical response properties , 1994 .

[10]  G. Schenter,et al.  Multicomponent dynamical nucleation theory and sensitivity analysis. , 2004, The Journal of chemical physics.

[11]  L. Dang,et al.  MOLECULAR DYNAMICS STUDY OF WATER CLUSTERS, LIQUID, AND LIQUID-VAPOR INTERFACE OF WATER WITH MANY-BODY POTENTIALS , 1997 .

[12]  W. L. Jorgensen,et al.  Comparison of simple potential functions for simulating liquid water , 1983 .

[13]  J. Pople,et al.  Self—Consistent Molecular Orbital Methods. XII. Further Extensions of Gaussian—Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules , 1972 .

[14]  Angela K. Wilson,et al.  Gaussian basis sets for use in correlated molecular calculations. IX. The atoms gallium through krypton , 1993 .

[15]  F. Abraham,et al.  Monte Carlo simulation of physical clusters of water molecules , 1974 .

[16]  Jacek Koput,et al.  Ab initio potential energy surface and vibrational-rotational energy levels of X2Σ+ CaOH , 2002 .

[17]  T. H. Dunning Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen , 1989 .

[18]  T. Dunning,et al.  Electron affinities of the first‐row atoms revisited. Systematic basis sets and wave functions , 1992 .

[19]  J. Coakley,et al.  Climate Forcing by Anthropogenic Aerosols , 1992, Science.

[20]  W W Kellogg,et al.  Aerosols and global warming. , 1992, Science.

[21]  Howard Reiss,et al.  A molecular theory of the homogeneous nucleation rate. I. Formulation and fundamental issues , 1999 .

[22]  Jarek Nieplocha,et al.  Advances, Applications and Performance of the Global Arrays Shared Memory Programming Toolkit , 2006, Int. J. High Perform. Comput. Appl..

[23]  Gregory K. Schenter,et al.  Generalized transition state theory in terms of the potential of mean force , 2003 .

[24]  Timothy Clark,et al.  Efficient diffuse function‐augmented basis sets for anion calculations. III. The 3‐21+G basis set for first‐row elements, Li–F , 1983 .

[25]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[26]  B. C. Garrett,et al.  Variational transition state theory of vapor phase nucleation , 1999 .

[27]  Jianzhong Liu,et al.  Comparison of TIP5P water model and TIP4P water model in cluster nucleation kinetics study through umbrella sampling and free energy perturbation , 2006 .

[28]  Gregory K. Schenter,et al.  Dynamical Nucleation Theory: A New Molecular Approach to Vapor-Liquid Nucleation , 1999 .

[29]  Howard Reiss,et al.  Defining Physical Clusters in Nucleation Theory from the N-Particle Distribution Function† , 1997 .

[30]  Frank H. Stillinger,et al.  Rigorous Basis of the Frenkel-Band Theory of Association Equilibrium , 1963 .

[31]  Yi Ming,et al.  Free energy perturbation study of water dimer dissociation kinetics. , 2004, The Journal of chemical physics.

[32]  Harold A. Scheraga,et al.  Monte Carlo recursion study of cluster formation from vapor , 1990 .

[33]  B. C. Garrett,et al.  Current status of transition-state theory , 1983 .

[34]  Jianzhong Liu,et al.  Free energy perturbation and dynamical nucleation study of water dimer and trimer through TIP5P water model , 2006 .