Augmenting neurotransmitter release by enhancing the apparent Ca2+ affinity of synaptotagmin 1.

Synaptotagmin 1 likely acts as a Ca2+ sensor in neurotransmitter release by Ca2+-binding to its two C2 domains. This notion was strongly supported by the observation that a mutation in the C2A domain causes parallel decreases in the apparent Ca2+ affinity of synaptotagmin 1 and in the Ca2+ sensitivity of release. However, this study was based on a single loss-of-function mutation. We now show that tryptophan substitutions in the synaptotagmin 1 C2 domains act as gain-of-function mutations to increase the apparent Ca2+ affinity of synaptotagmin 1. The same substitutions, when introduced into synaptotagmin 1 expressed in neurons, enhance the Ca2+ sensitivity of release. Mutations in the two C2 domains lead to comparable and additive effects in release. Our results thus show that the apparent Ca2+ sensitivity of release is dictated by the apparent Ca2+ affinity of synaptotagmin 1 in both directions, and that Ca2+ binding to both C2 domains contributes to Ca2+ triggering of release.

[1]  Bert Sakmann,et al.  Control of synaptic strength and timing by the release-site Ca2+ signal , 2005, Nature Neuroscience.

[2]  G. Augustine,et al.  Dual Roles of the C2B Domain of Synaptotagmin I in Synchronizing Ca2+-Dependent Neurotransmitter Release , 2004, The Journal of Neuroscience.

[3]  T. Südhof The synaptic vesicle cycle , 2004 .

[4]  T. Südhof,et al.  N-Glycosylation Is Essential for Vesicular Targeting of Synaptotagmin 1 , 2004, Neuron.

[5]  E. Chapman,et al.  PIP2 increases the speed of response of synaptotagmin and steers its membrane-penetration activity toward the plasma membrane , 2004, Nature Structural &Molecular Biology.

[6]  J. Rizo,et al.  Facile detection of protein-protein interactions by one-dimensional NMR spectroscopy. , 2003, Biochemistry.

[7]  E. Chapman,et al.  Visualization of synaptotagmin I oligomers assembled onto lipid monolayers , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[8]  T. Südhof,et al.  Sr2+ Binding to the Ca2+ Binding Site of the Synaptotagmin 1 C2B Domain Triggers Fast Exocytosis without Stimulating SNARE Interactions , 2003, Neuron.

[9]  T. Südhof,et al.  Structure/Function Analysis of Ca2+ Binding to the C2A Domain of Synaptotagmin 1 , 2002, The Journal of Neuroscience.

[10]  I. Robinson,et al.  The C2B Ca2+-binding motif of synaptotagmin is required for synaptic transmission in vivo , 2002, Nature.

[11]  T. Schwarz,et al.  Synaptotagmins I and IV promote transmitter release independently of Ca2+ binding in the C2A domain , 2002, Nature.

[12]  Edwin R. Chapman,et al.  Synaptotagmin: A Ca2+ sensor that triggers exocytosis? , 2002, Nature Reviews Molecular Cell Biology.

[13]  T. Südhof,et al.  Synaptotagmin function in dense core vesicle exocytosis studied in cracked PC12 cells , 2002, Nature Neuroscience.

[14]  Xiaodong Zhang,et al.  Ca2+-Dependent Synaptotagmin Binding to SNAP-25 Is Essential for Ca2+-Triggered Exocytosis , 2002, Neuron.

[15]  J. Rizo,et al.  NMR measurement of the off rate from the first calcium‐binding site of the synaptotagmin I C2A domain , 2002, FEBS letters.

[16]  Christian Rosenmund,et al.  The effects of temperature on vesicular supply and release in autaptic cultures of rat and mouse hippocampal neurons , 2002, The Journal of physiology.

[17]  T. Südhof,et al.  Role of electrostatic and hydrophobic interactions in Ca(2+)-dependent phospholipid binding by the C(2)A-domain from synaptotagmin I. , 2002, Diabetes.

[18]  Ping Wang,et al.  C2A activates a cryptic Ca2+-triggered membrane penetration activity within the C2B domain of synaptotagmin I , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[19]  W. Regehr,et al.  Short-term synaptic plasticity. , 2002, Annual review of physiology.

[20]  T. Südhof,et al.  Three-Dimensional Structure of the Synaptotagmin 1 C2B-Domain Synaptotagmin 1 as a Phospholipid Binding Machine , 2001, Neuron.

[21]  Ping Wang,et al.  The tandem C2 domains of synaptotagmin contain redundant Ca2+ binding sites that cooperate to engage t-SNAREs and trigger exocytosis , 2001, The Journal of cell biology.

[22]  T. Südhof,et al.  Synaptotagmin I functions as a calcium regulator of release probability , 2001, Nature.

[23]  J. Littleton,et al.  The C2b Domain of Synaptotagmin Is a Ca2+–Sensing Module Essential for Exocytosis , 2000, The Journal of cell biology.

[24]  T. Martin,et al.  The C Terminus of SNAP25 Is Essential for Ca2+-dependent Binding of Synaptotagmin to SNARE Complexes* , 2000, The Journal of Biological Chemistry.

[25]  M. Saraste,et al.  FEBS Lett , 2000 .

[26]  D. Fasshauer,et al.  Kinetics of Synaptotagmin Responses to Ca2+ and Assembly with the Core SNARE Complex onto Membranes , 1999, Neuron.

[27]  U. Ashery,et al.  An efficient method for infection of adrenal chromaffin cells using the Semliki Forest virus gene expression system. , 1999, European journal of cell biology.

[28]  T. Südhof,et al.  Mechanism of phospholipid binding by the C2A-domain of synaptotagmin I. , 1998, Biochemistry.

[29]  T. Südhof,et al.  Ca2+ binding to synaptotagmin: how many Ca2+ ions bind to the tip of a C2‐domain? , 1998, The EMBO journal.

[30]  T. Südhof,et al.  C2-domains, Structure and Function of a Universal Ca2+-binding Domain* , 1998, The Journal of Biological Chemistry.

[31]  E. Chapman,et al.  Direct Interaction of a Ca2+-binding Loop of Synaptotagmin with Lipid Bilayers* , 1998, The Journal of Biological Chemistry.

[32]  W. Catterall,et al.  Interaction of the synprint site of N-type Ca2+ channels with the C2B domain of synaptotagmin I. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[33]  T. Südhof,et al.  Synaptotagmin–Syntaxin Interaction: The C2 Domain as a Ca2+-Dependent Electrostatic Switch , 1997, Neuron.

[34]  Josep Rizo,et al.  Synaptotagmins: C2-Domain Proteins That Regulate Membrane Traffic , 1996, Neuron.

[35]  T. Südhof,et al.  Bipartite Ca2+-Binding Motif in C2 Domains of Synaptotagmin and Protein Kinase C , 1996, Science.

[36]  Christian Rosenmund,et al.  Definition of the Readily Releasable Pool of Vesicles at Hippocampal Synapses , 1996, Neuron.

[37]  R. Scheller,et al.  Localization of synaptotagmin-binding domains on syntaxin , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[38]  R. Jahn,et al.  A Novel Function for the Second C2 Domain of Synaptotagmin , 1996, The Journal of Biological Chemistry.

[39]  T. Südhof,et al.  Distinct Ca-dependent Properties of the First and Second C-domains of Synaptotagmin I (*) , 1996, The Journal of Biological Chemistry.

[40]  P. Hanson,et al.  Ca2+ Regulates the Interaction between Synaptotagmin and Syntaxin 1 (*) , 1995, The Journal of Biological Chemistry.

[41]  Thomas C. Südhof,et al.  Ca2+-dependent and -independent activities of neural and non-neural synaptotagmins , 1995, Nature.

[42]  S. Sprang,et al.  Structure of the first C2 domain of synaptotagmin I: A novel Ca2+/phospholipid-binding fold , 1995, Cell.

[43]  K. Mikoshiba,et al.  Inositol-1,3,4,5-tetrakisphosphate binding to C2B domain of IP4BP/synaptotagmin II. , 1994, The Journal of biological chemistry.

[44]  T. Südhof,et al.  Synaptotagmin I: A major Ca2+ sensor for transmitter release at a central synapse , 1994, Cell.

[45]  R. Jahn,et al.  Calcium-dependent interaction of the cytoplasmic region of synaptotagmin with membranes. Autonomous function of a single C2-homologous domain. , 1994, The Journal of biological chemistry.

[46]  T. Südhof,et al.  A single C2 domain from synaptotagmin I is sufficient for high affinity Ca2+/phospholipid binding. , 1993, The Journal of biological chemistry.

[47]  Hugo J. Bellen,et al.  Mutational analysis of Drosophila synaptotagmin demonstrates its essential role in Ca2+-activated neurotransmitter release , 1993, Cell.

[48]  T. Schwarz,et al.  Synaptic transmission persists in synaptotagmin mutants of Drosophila , 1993, Cell.

[49]  M. Nonet,et al.  Synaptic function is impaired but not eliminated in C. elegans mutants lacking synaptotagmin , 1993, Cell.

[50]  R. Scheller,et al.  Syntaxin: a synaptic protein implicated in docking of synaptic vesicles at presynaptic active zones. , 1992, Science.

[51]  P. Greengard,et al.  Electrostatic and hydrophobic interactions of synapsin I and synapsin I fragments with phospholipid bilayers , 1989, The Journal of cell biology.

[52]  R. Kelly,et al.  Lipids of synaptic vesicles: relevance to the mechanism of membrane fusion. , 1981, Biochemistry.