The phosphoenolpyruvate carboxykinase also catalyzes C3 carboxylation at the interface of glycolysis and the TCA cycle of Bacillus subtilis.

[1]  U. Sauer,et al.  The Soluble and Membrane-bound Transhydrogenases UdhA and PntAB Have Divergent Functions in NADPH Metabolism of Escherichia coli* , 2004, Journal of Biological Chemistry.

[2]  U. Sauer High-throughput phenomics: experimental methods for mapping fluxomes. , 2004, Current opinion in biotechnology.

[3]  T. Shibata,et al.  Mapping of genes determining nonpermissiveness and host-specific restriction to bacteriophages in Bacillus subtilis Marburg , 1979, Molecular and General Genetics MGG.

[4]  M. Araúzo-Bravo,et al.  Metabolic flux analysis of pykF gene knockout Escherichia coli based on 13C-labeling experiments together with measurements of enzyme activities and intracellular metabolite concentrations , 2004, Applied Microbiology and Biotechnology.

[5]  U. Sauer,et al.  A Novel Metabolic Cycle Catalyzes Glucose Oxidation and Anaplerosis in Hungry Escherichia coli* , 2003, Journal of Biological Chemistry.

[6]  Stephan Hans,et al.  Metabolic phenotype of phosphoglucose isomerase mutants of Corynebacterium glutamicum. , 2003, Journal of biotechnology.

[7]  Nicola Zamboni,et al.  Knockout of the high-coupling cytochrome aa3 oxidase reduces TCA cycle fluxes in Bacillus subtilis. , 2003, FEMS microbiology letters.

[8]  U. Sauer,et al.  Metabolic flux profiling of Escherichia coli mutants in central carbon metabolism using GC-MS. , 2003, European journal of biochemistry.

[9]  H. Mori,et al.  Analysis of metabolic and physiological responses to gnd knockout in Escherichia coli by using C-13 tracer experiment and enzyme activity measurement. , 2003, FEMS microbiology letters.

[10]  Ronald W. Davis,et al.  Role of duplicate genes in genetic robustness against null mutations , 2003, Nature.

[11]  Nicola Zamboni,et al.  Reducing maintenance metabolism by metabolic engineering of respiration improves riboflavin production by Bacillus subtilis. , 2003, Metabolic engineering.

[12]  A. Steinbüchel,et al.  The malate dehydrogenase of Ralstonia eutropha and functionality of the C(3)/C(4) metabolism in a Tn5-induced mdh mutant. , 2002, FEMS microbiology letters.

[13]  Thomas Szyperski,et al.  Intracellular Carbon Fluxes in Riboflavin-Producing Bacillussubtilis during Growth on Two-Carbon Substrate Mixtures , 2002, Applied and Environmental Microbiology.

[14]  A. D. de Graaf,et al.  Analysis of carbon metabolism in Escherichia coli strains with an inactive phosphotransferase system by (13)C labeling and NMR spectroscopy. , 2002, Metabolic Engineering.

[15]  U. Sauer,et al.  Metabolic Flux Responses to Pyruvate Kinase Knockout in Escherichia coli , 2002, Journal of bacteriology.

[16]  C. Wittmann,et al.  Metabolic flux analysis using mass spectrometry. , 2002, Advances in biochemical engineering/biotechnology.

[17]  Antoine Danchin,et al.  SubtiList: the reference database for the Bacillus subtilis genome , 2002, Nucleic Acids Res..

[18]  Uwe Sauer,et al.  Bacillus subtilis Metabolism and Energetics in Carbon-Limited and Excess-Carbon Chemostat Culture , 2001, Journal of bacteriology.

[19]  U. Sauer,et al.  Metabolic flux response to phosphoglucose isomerase knock-out in Escherichia coli and impact of overexpression of the soluble transhydrogenase UdhA. , 2001, FEMS microbiology letters.

[20]  J E Bailey,et al.  Metabolic flux analysis with a comprehensive isotopomer model in Bacillus subtilis. , 2001, Biotechnology and bioengineering.

[21]  U. Sauer,et al.  Stoichiometric growth model for riboflavin-producing Bacillus subtilis. , 2001, Biotechnology and bioengineering.

[22]  E R McCabe,et al.  Consequences of complexity within biological networks: robustness and health, or vulnerability and disease. , 2001, Molecular genetics and metabolism.

[23]  M. Hecker,et al.  Transcription of glycolytic genes and operons in Bacillus subtilis: evidence for the presence of multiple levels of control of the gapA operon , 2001, Molecular microbiology.

[24]  W. Wiechert 13C metabolic flux analysis. , 2001, Metabolic engineering.

[25]  K. Kobayashi,et al.  Combined transcriptome and proteome analysis as a powerful approach to study genes under glucose repression in Bacillus subtilis. , 2001, Nucleic acids research.

[26]  W. Wiechert,et al.  In Vivo Quantification of Parallel and Bidirectional Fluxes in the Anaplerosis of Corynebacterium glutamicum * , 2000, The Journal of Biological Chemistry.

[27]  M. Domach,et al.  Characterization of Growth and Acid Formation in a Bacillus subtilis Pyruvate Kinase Mutant , 2000, Applied and Environmental Microbiology.

[28]  A. Wagner Robustness against mutations in genetic networks of yeast , 2000, Nature Genetics.

[29]  W. Hillen,et al.  Regulation of carbon catabolism in Bacillus species. , 2000, Annual review of microbiology.

[30]  J. Nielsen,et al.  Metabolic network analysis. A powerful tool in metabolic engineering. , 2000, Advances in biochemical engineering/biotechnology.

[31]  U. Sauer,et al.  Metabolic Flux Ratio Analysis of Genetic and Environmental Modulations of Escherichia coli Central Carbon Metabolism , 1999, Journal of bacteriology.

[32]  Ronald W. Davis,et al.  Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. , 1999, Science.

[33]  J. Zeikus,et al.  Characterization of the Oxaloacetate Decarboxylase and Pyruvate Kinase-like Activities of Saccharomyces cerevisiae and Anaerobiospirillum succiniciproducens Phosphoenolpyruvate Carboxykinases , 1999, Journal of protein chemistry.

[34]  James E. Bailey,et al.  Lessons from metabolic engineering for functional genomics and drug discovery , 1999, Nature Biotechnology.

[35]  N. Hannett,et al.  Genetic engineering of Bacillus subtilis for the commercial production of riboflavin , 1999, Journal of Industrial Microbiology and Biotechnology.

[36]  H Sahm,et al.  the Czech Republic, , 2022 .

[37]  A. Goffeau,et al.  The complete genome sequence of the Gram-positive bacterium Bacillus subtilis , 1997, Nature.

[38]  Martin A. Nowak,et al.  Evolution of genetic redundancy , 1997, Nature.

[39]  C. Vieille,et al.  Cloning, sequencing, and overexpression of the Anaerobiospirillum succiniciproducens phosphoenolpyruvate carboxykinase (pckA) gene , 1997, Applied and environmental microbiology.

[40]  U. Sauer,et al.  Metabolic fluxes in riboflavin-producing Bacillus subtilis , 1997, Nature Biotechnology.

[41]  P. Weimer,et al.  Purification and characterization of phosphoenolpyruvate carboxykinase from the anaerobic ruminal bacterium Ruminococcus flavefaciens , 1997, Archives of Microbiology.

[42]  U. Sauer,et al.  Physiology and metabolic fluxes of wild-type and riboflavin-producing Bacillus subtilis , 1996, Applied and environmental microbiology.

[43]  A Martinez,et al.  Cloning of the two pyruvate kinase isoenzyme structural genes from Escherichia coli: the relative roles of these enzymes in pyruvate biosynthesis , 1995, Journal of bacteriology.

[44]  T. Szyperski Biosynthetically Directed Fractional 13C‐labeling of Proteinogenic Amino Acids , 1995 .

[45]  T. Szyperski Biosynthetically directed fractional 13C-labeling of proteinogenic amino acids. An efficient analytical tool to investigate intermediary metabolism. , 1995, European journal of biochemistry.

[46]  A. Sinskey,et al.  Structural and functional analysis of pyruvate kinase from Corynebacterium glutamicum , 1994, Applied and environmental microbiology.

[47]  R. Losick,et al.  Bacillus Subtilis and Other Gram-Positive Bacteria: Biochemistry, Physiology, and Molecular Genetics , 1993 .

[48]  C. Harwood,et al.  Molecular biological methods for Bacillus , 1990 .

[49]  H. Zunft Methods of Enzymatic Analysis. 3. Aufl. Herausgegeben von H. U. Bergmeyer, J. Bergmeyer und M. Grassl. Vol. X. Antigens and Antibodies 1. 509 Seiten, 65 Abb., 1 Tab. VCH Verlagsgesellschaft, Weinheim, Deerfield Beach/Florida, Basel 1986. Preis: 295,‐ DM , 1986 .

[50]  M W Coomes,et al.  Properties of an Escherichia coli mutant deficient in phosphoenolpyruvate carboxylase catalytic activity , 1985, Journal of bacteriology.

[51]  B. Bowien,et al.  Unusual C3 and C4 metabolism in the chemoautotroph Alcaligenes eutrophus , 1984, Journal of bacteriology.

[52]  E. Freese,et al.  Role of pyruvate carboxylase, phosphoenolpyruvate carboxykinase, and malic enzyme during growth and sporulation of Bacillus subtilis. , 1973, The Journal of biological chemistry.

[53]  E. Freese,et al.  Pyruvate kinase of bacillus subtilis. , 1972, Biochimica et biophysica acta.

[54]  P. Fortnagel,et al.  Analysis of Sporulation Mutants II. Mutants Blocked in the Citric Acid Cycle , 1968, Journal of bacteriology.

[55]  H. Bergmeyer Methods of Enzymatic Analysis , 2019 .