Refined Views of Ancient Ocean Chemistry: Tracking Trace Element Incorporation in Pyrite Framboids Using Atom Probe Tomography

[1]  L. Kovarik,et al.  Pushing the limits: Resolving paleoseawater signatures in nanoscale fluid inclusions by atom probe tomography , 2022, Earth and Planetary Science Letters.

[2]  L. Kovarik,et al.  Nanoscale trace-element zoning in pyrite framboids and implications for paleoproxy applications , 2022, Geology.

[3]  E. al.,et al.  A new kind of invisible gold in pyrite hosted in deformation-related dislocations , 2021, Geology.

[4]  A. Stepanov,et al.  Ground-truthing the pyrite trace element proxy in modern euxinic settings , 2021, American Mineralogist.

[5]  B. Gault,et al.  Fluid inclusion induced hardening: nanoscale evidence from naturally deformed pyrite , 2021, Contributions to Mineralogy and Petrology.

[6]  B. Gault,et al.  Analysis of nanoscale fluid inclusions in geomaterials by atom probe tomography: Experiments and numerical simulations. , 2020, Ultramicroscopy.

[7]  N. Planavsky,et al.  Correlated molybdenum and uranium isotope signatures in modern anoxic sediments: Implications for their use as paleo-redox proxy , 2020 .

[8]  S. Reddy,et al.  Atom Probe Tomography: Development and Application to the Geosciences , 2020, Geostandards and Geoanalytical Research.

[9]  M. Auger,et al.  A Nanoscale Investigation of Carlin-Type Gold Deposits: An Atom-Scale Elemental and Isotopic Perspective , 2019, Economic Geology.

[10]  A. Stepanov,et al.  The formation mechanisms of sedimentary pyrite nodules determined by trace element and sulfur isotope microanalysis , 2019, Geochimica et Cosmochimica Acta.

[11]  P. Whitfield,et al.  Specimen preparation , 2019, International Tables for Crystallography.

[12]  S. Reddy,et al.  Gold, arsenic, and copper zoning in pyrite: A record of fluid chemistry and growth kinetics , 2019, Geology.

[13]  D. Rickard How long does it take a pyrite framboid to form? , 2019, Earth and Planetary Science Letters.

[14]  L. Kovarik,et al.  Visualizing the iron atom exchange front in the Fe(II)-catalyzed recrystallization of goethite by atom probe tomography , 2019, Proceedings of the National Academy of Sciences.

[15]  R. Hough,et al.  Time-resolved, defect-hosted, trace element mobility in deformed Witwatersrand pyrite , 2019, Geoscience Frontiers.

[16]  B. Arey,et al.  Resolving Iron(II) Sorption and Oxidative Growth on Hematite (001) Using Atom Probe Tomography , 2018 .

[17]  A. Stepanov,et al.  Whole rock and discrete pyrite geochemistry as complementary tracers of ancient ocean chemistry: An example from the Neoproterozoic Doushantuo Formation, China , 2017 .

[18]  R. Large,et al.  Pyrite compositions from VHMS and orogenic Au deposits in the Yilgarn Craton, Western Australia: Implications for gold and copper exploration , 2016 .

[19]  S. Micklethwaite,et al.  Nanoscale gold clusters in arsenopyrite controlled by growth rate not concentration: Evidence from atom probe microscopy , 2016 .

[20]  L. Peterson,et al.  The chromium isotope composition of reducing and oxic marine sediments , 2016 .

[21]  T. Lyons,et al.  Trace Element Content of Sedimentary Pyrite in Black Shales , 2015 .

[22]  Bert M. Weckhuysen,et al.  Determining the location and nearest neighbours of aluminium in zeolites with atom probe tomography , 2015, Nature Communications.

[23]  R. Large,et al.  Comparison of metal enrichment in pyrite framboids from a metal-enriched and metal-poor estuary , 2014 .

[24]  J. Long,et al.  Trace element content of sedimentary pyrite as a new proxy for deep-time ocean-atmosphere evolution , 2014 .

[25]  R. Large,et al.  Evidence for an Intrabasinal Source and Multiple Concentration Processes in the Formation of the Carbon Leader Reef, Witwatersrand Supergroup, South Africa , 2013 .

[26]  J. Cairney,et al.  Atom probe tomography , 2013, Nature Reviews Methods Primers.

[27]  Bernhard Jaun,et al.  The key nickel enzyme of methanogenesis catalyses the anaerobic oxidation of methane , 2010, Nature.

[28]  R. Large,et al.  Gold and Trace Element Zonation in Pyrite Using a Laser Imaging Technique: Implications for the Timing of Gold in Orogenic and Carlin-Style Sediment-Hosted Deposits , 2009 .

[29]  R. Forbes,et al.  Atom-Probe Tomography: The Local Electrode Atom Probe , 2000 .

[30]  R. Ewing,et al.  A proposed new type of arsenian pyrite: Composition, nanostructure and geological significance , 2008 .

[31]  R. Large,et al.  Age and pyrite Pb-isotopic composition of the giant Sukhoi Log sediment-hosted gold deposit, Russia , 2008 .

[32]  Michael P Moody,et al.  New Techniques for the Analysis of Fine-Scaled Clustering Phenomena within Atom Probe Tomography (APT) Data , 2007, Microscopy and Microanalysis.

[33]  J. Whitney,et al.  Arsenic incorporation into authigenic pyrite, Bengal Basin sediment, Bangladesh , 2007 .

[34]  D Lawrence,et al.  In situ site-specific specimen preparation for atom probe tomography. , 2007, Ultramicroscopy.

[35]  T. Lyons,et al.  Trace metals as paleoredox and paleoproductivity proxies: An update , 2006 .

[36]  M. Reich,et al.  First-principles calculations of the thermodynamic mixing properties of arsenic incorporation into pyrite and marcasite , 2006 .

[37]  R. Ewing,et al.  Solubility of gold in arsenian pyrite , 2005 .

[38]  T. Lyons,et al.  Contrasting sulfur geochemistry and Fe/Al and Mo/Al ratios across the last oxic-to-anoxic transition in the Cariaco Basin, Venezuela , 2003 .

[39]  G. Luther,et al.  CHEMICAL INFLUENCES ON TRACE METAL-SULFIDE INTERACTIONS IN ANOXIC SEDIMENTS , 1999 .

[40]  I. B. Butler,et al.  Framboidal pyrite formation via the oxidation of iron (II) monosulfide by hydrogen sulphide , 1999 .

[41]  D. Groves,et al.  Late-Archean granitoid-hosted lode-gold deposits, Yilgarn Craton, Western Australia: Deposit characteristics, crustal architecture and implications for ore genesis , 1998 .

[42]  J. Overpeck,et al.  Deglacial changes in ocean circulation from an extended radiocarbon calibration , 1998, Nature.

[43]  T. Lyons Sulfur isotopic trends and pathways of iron sulfide formation in upper Holocene sediments of the anoxic Black Sea , 1997 .

[44]  J. Morse,et al.  Pyrite formation under conditions approximating those in anoxic sediments: II. Influence of precursor iron minerals and organic matter , 1997 .

[45]  M. Fleet,et al.  Gold-bearing arsenian pyrite and marcasite and arsenopyrite from Carlin Trend gold deposits and laboratory synthesis , 1997 .

[46]  J. Overpeck,et al.  The nature of varved sedimentation in the Cariaco Basin, Venezuela, and its palaeoclimatic significance , 1996, Geological Society, London, Special Publications.

[47]  J. Overpeck,et al.  Rapid climate changes in the tropical Atlantic region during the last deglaciation , 1996, Nature.

[48]  G. Olivo,et al.  As growth banding and the presence of Au in pyrites from the Santa Rita gold vein deposit hosted in Proterozoic metasediments, Goias State, Brazil , 1994 .

[49]  J. Morse,et al.  Adsorption and coprecipitation of divalent metals with mackinawite (FeS) , 1993 .

[50]  N. Cook,et al.  Concentrations of invisible gold in the common sulfides , 1990 .

[51]  R. Raiswell,et al.  The incorporation of trace elements into pyrite during diagenesis of black shales, Yorkshire, England , 1980 .

[52]  M. Einaudi Copper zoning in pyrite from Cerro de Pasco, Peru , 1968 .

[53]  W. Skinner,et al.  Formation of As(II)-pyrite during experimental replacement of magnetite under hydrothermal conditions , 2013 .

[54]  J. Glass,et al.  The geochemical record of the ancient nitrogen cycle, nitrogen isotopes, and metal cofactors. , 2011, Methods in enzymology.

[55]  D. Z. Piper,et al.  Trace-element deposition in the Cariaco Basin, Venezuela Shelf, under sulfate-reducing conditions: a history of the local hydrography and global climate, 20 ka to the present , 2002 .

[56]  H. Barnes,et al.  Formation processes of framboidal pyrite , 1997 .