Management systems of adhesive materials throughout the Neolithic in the North-West Mediterranean
暂无分享,去创建一个
Didier Binder | Xavier Terradas | Giovanna Radi | M. Regert | Martine Regert | Jean Guilaine | Jean-Jacques Filippi | Jean-Jacques Filippi | Maxime Rageot | Cédric Lepère | Auréade Henry | Gourguen Davtian | Xavier Fernandez | Frédéric Jallet | Eric Thirault | D. Binder | A. Henry | J. Guilaine | X. Terradas | G. Radi | M. Rageot | Xavier Fernández | Gourguen Davtian | Cédric Lepère | Frédéric Jallet | Éric Thirault
[1] Z. Jacobs,et al. Hafting of Middle Paleolithic tools in Latium (central Italy): New data from Fossellone and Sant’Agostino caves , 2019, PloS one.
[2] J. Connan,et al. An overview of bitumen trade in the Near East from the Neolithic (c.8000 BC) to the early Islamic period , 2010 .
[3] C. Heron,et al. COMPOSITIONAL VARIATIONS IN AGED AND HEATED PISTACIA RESIN FOUND IN LATE BRONZE AGE CANAANITE AMPHORAE AND BOWLS FROM AMARNA, EGYPT* , 2003 .
[4] R. Evershed,et al. Pine wood origin for pitch from the Mary Rose , 1985, Nature.
[5] M. Regert,et al. Birch-bark tar in the Roman world: the persistence of an ancient craft tradition? , 2019, Antiquity.
[6] B. Stern,et al. NEOLITHIC ZOOMORPHIC VESSELS FROM EASTERN MACEDONIA, GREECE : ISSUES OF FUNCTION , 2009 .
[7] S. Thiébault,et al. L'abri Pendimoun à Castellar (Alpes-Maritimes). Nouvelles données sur le complexe culturel de la céramique imprimée méditerranéenne dans son contexte stratigraphique , 1993 .
[8] P. Krasutsky. Birch bark research and development. , 2006, Natural product reports.
[9] V. Andrieu‐Ponel,et al. Towards the reconstruction of the Holocene vegetation history of Lower Provence: two new pollen profiles from Marais des Baux , 2000 .
[10] B. van Os,et al. Middle Paleolithic complex technology and a Neandertal tar-backed tool from the Dutch North Sea , 2019, Proceedings of the National Academy of Sciences.
[11] R. Piqué,et al. Áreas de aprovisionamiento, territorios de subsistencia y producciones técnicas en el Neolítico antiguo de la Draga , 2012 .
[12] C. Lepère. Chronologie des productions céramiques et dynamiques culturelles du Chasséen de Provence , 2012 .
[13] N. Dubois,et al. Identification de brai de bouleau sur quatre vases du site rubané de Fexhe-le-Haut-Clocher "podrî l'Cortri" , 2001 .
[14] K. Kotsakis,et al. Organic residue analysis of Neolithic pottery from North Greece , 2008 .
[15] P. Fluzin,et al. Arts du feu et productions artisanales , 2000 .
[16] R. Evershed,et al. New insights into the Early Neolithic economy and management of animals in Southern and Central Europe revealed using lipid residue analyses of pottery vessels , 2012 .
[17] P. Stockhammer,et al. New insights into Early Celtic consumption practices: Organic residue analyses of local and imported pottery from Vix-Mont Lassois , 2019, PloS one.
[18] P. Rostan. Les ressources en cristaux de quartz hyalin du sud-est de la France et leurs potentialités archéologiques , 2005 .
[19] A. Carré,et al. Birch Bark Tar Production: Experimental and Biomolecular Approaches to the Study of a Common and Widely Used Prehistoric Adhesive , 2019 .
[20] R. Evershed,et al. Archaeology: Formulation of a Roman cosmetic , 2004, Nature.
[21] Gundel Steigenberger,et al. Natural resins and balsams from an eighteenth-century pharmaceutical collection analysed by gas chromatography/mass spectrometry , 2011, Analytical and bioanalytical chemistry.
[22] D. Jarvie,et al. New Evidence for Significant Use of Bitumen in Middle Palaeolithic Technical Systems at Umm el Tlel (Syria) around 70,000 BP , 2008 .
[23] Norbert Mercier,et al. Bitumen as a hafting material on Middle Palaeolithic artefacts , 1996, Nature.
[24] Sylvain Burri. Vivre de l'inculte, vivre dans l'inculte en Basse Provence centrale à la fin du Moyen Âge : Histoire, archéologie et ethnoarchéologie d'un mode de vie itinérant , 2012 .
[25] M. Regert,et al. Chemical alteration and use of beeswax through time: accelerated ageing tests and analysis of archaeological samples from various environmental contexts , 2001 .
[26] Dushka Urem-Kotsou,et al. Bulk stable light isotopic ratios in archaeological birch bark tars , 2006 .
[27] A. Kriiska,et al. INVESTIGATION OF THE ADHESIVE RESIDUE ON THE FLINT INSERT AND THE ADHESIVE LUMP FOUND FROM THE PULLI EARLY MESOLITHIC SETTLEMENT SITE (ESTONIA) BY MICRO-ATR-FT-IR SPECTROSCOPY , 2011 .
[28] M. Colombini,et al. A new Palaeolithic discovery: tar-hafted stone tools in a European Mid-Pleistocene bone-bearing bed , 2006 .
[29] U. Colombo,et al. Geochemical analysis of Italian oils and asphalts , 1961 .
[30] S. Thiébault. Anthracoanalyse des établissements néolithiques de la région liguro-provençale , 2001 .
[31] Janet Battentier,et al. La grotte de Pertus II (Méailles, Alpes-de-Haute-Provence) : exploitation du couvert forestier au chasséen récent (3850-3650 cal. BC) , 2016 .
[32] S. Isaksson,et al. Organic geochemical evidence for pine tar production in middle Eastern Sweden during the Roman Iron Age , 2006 .
[33] D. Binder,et al. Identification de brai de bouleau (Betula) dans le Néolithique de Giribaldi (Nice, France) par la spectrométrie de masse , 1990 .
[34] Jean-Marie Le Tensorer,et al. Molecular evidence of bitumen in the Mousterian lithic assemblage of Hummal (Central Syria) , 2013 .
[35] J. Poulin,et al. The Identification of Hafting Adhesive on a Slotted Antler Point from a Southwest Yukon Ice Patch , 2008, American Antiquity.
[36] E. Iriarte,et al. Human-environment interaction during the Mesolithic- Neolithic transition in the NE Iberian Peninsula. Vegetation history, climate change and human impact during the Early-Middle Holocene in the Eastern Pre-Pyrenees , 2017 .
[37] M. Regert,et al. Adhesive Production and Pottery Function During the Iron Age at the Site of Grand Aunay (Sarthe, France)* , 2003 .
[38] B. Gratuze,et al. La circulation de l'obsidienne dans le sud de la France au Néolithique , 2012 .
[39] P. D. Ruffray,et al. The phytosociological database SOPHY as the basis of plant socio-ecology and phytoclimatology in France , 2012 .
[40] M. Menu,et al. Identification of Neolithic hafting adhesives from two lake dwellings at Chalain (Jura, France) , 1998 .
[41] M. V. Russo,et al. GC-MS characterisation and identification of natural terpenic resins employed in works of art. , 2004, Annali di chimica.
[42] L. Caruso Fermé,et al. Landscape and forest exploitation at the ancient Neolithic site of La Draga (Banyoles, Spain) , 2014 .
[43] R. Evershed,et al. Complex organic chemical balms of Pharaonic animal mummies , 2004, Nature.
[44] J. Connan,et al. Archaeological Bitumen: Indentification, Origins and Uses of an Ancient Near Eastern Material , 1992 .
[45] J. Connan,et al. Use and trade of bitumen in antiquity and prehistory: molecular archaeology reveals secrets of past civilizations , 1999 .
[46] J. Mills. Diterpenes of Larix oleoresins , 1973 .
[47] Salima Ikram,et al. Organic chemistry of balms used in the preparation of pharaonic meat mummies , 2013, Proceedings of the National Academy of Sciences.
[48] Dushka Urem-Kotsou,et al. Following their tears: Production and use of plant exudates in the Neolithic of North Aegean and the Balkans , 2018, Quaternary International.
[49] P. Schaeffer,et al. Birch bark tar and jewellery: The case study of a necklace from the Iron Age (Eckwersheim, NE France) , 2018, Journal of Archaeological Science: Reports.
[50] S. Rasmussen,et al. A 5700 year-old human genome and oral microbiome from chewed birch pitch , 2019, Nature Communications.
[51] P. Schaeffer,et al. Betulin-related esters from birch bark tar: Identification, origin and archaeological significance , 2020, Organic Geochemistry.
[52] Studies in organic archaeometry I: Identification of the prehistoric adhesive used by the 'Tyrolean Iceman' to fix his weapons , 2000 .
[53] M. Regert,et al. Exploitation of beehive products, plant exudates and tars in Corsica during the early Iron Age , 2016 .
[54] G. Culioli,et al. Characterization of archaeological frankincense by gas chromatography-mass spectrometry. , 2004, Journal of chromatography. A.
[55] C. Gaillard,et al. Bladelet cores as weapon tips? Hafting residue identification and micro-wear analysis of three carinated burins from the late Aurignacian of Les Vachons, France , 2009 .
[56] C. Hametner,et al. Studies in organic archaeometry IV: analysis of an organic agglutinant used to fix iron-age clay figurines to their base , 2002 .
[57] Wilhelm Sandermann. Untersuchung vorgeschichtlicher "Gräberharze und Kitte" , 1965 .
[58] C. Héron,et al. Chewing tar in the early Holocene: an archaeological and ethnographic evaluation , 1999, Antiquity.
[59] B. Defaut. CARTE DE LA VEGETATION DE LA FRANCE , 2001 .
[60] R. Ekman. The Suberin Monomers and Triterpenoids from the Outer Bark of Betula verrucosa Ehrh. , 1983 .
[61] L. Righetti,et al. Birch tar production does not prove Neanderthal behavioral complexity , 2019, Proceedings of the National Academy of Sciences.
[62] J. Olsen,et al. Molecular evidence of use of hide glue in 4th millennium BC Europe , 2015 .
[63] M. Regert,et al. Investigating the history of prehistoric glues by gas chromatography-mass spectrometry. , 2004, Journal of separation science.
[64] I. Théry-Parisot,et al. The environment of the last hunters-gatherers and first agro-pastoralists in the western Mediterranean region, between the Rhone and the Northern Apennines (7th - 6th millennium cal. BCE): Attractiveness of the landscape units and settlement patterns , 2017 .
[65] J. Bosch,et al. The status of imported Barremian-Bedoulian flint in north-eastern Iberia during the Middle Neolithic. Insights from the variscite mines of Gavà (Barcelona) , 2019, PloS one.
[66] A. Lucquin,et al. Analysis of adhering organic residues of two ''coupes-a `-socles'' from the Neolithic funerary site ''La Hougue Bie'' in Jersey: evidences of birch bark tar utilisation , 2007 .
[67] Ancient DNA from mastics solidifies connection between material culture and genetics of mesolithic hunter–gatherers in Scandinavia , 2019, Communications Biology.
[68] R. Evershed,et al. Identification of an adhesive used to repair a Roman jar , 1993 .
[69] E. Ribechini,et al. Chemical investigations of bitumen from Neolithic archaeological excavations in Italy by GC/MS combined with principal component analysis , 2019, Analytical Methods.
[70] H. Lohninger,et al. Identification of archaeological and recent wood tar pitches using gas chromatography/mass spectrometry and pattern recognition , 1990 .
[71] Céline Daher,et al. A joint use of Raman and infrared spectroscopies for the identification of natural organic media used in ancient varnishes , 2010 .
[72] L. C. Fermé,et al. Landscape and forest exploitation at the ancient Neolithic site of La Draga (Banyoles, Spain) , 2014 .
[73] Boon,et al. Mass spectrometric methodology for the analysis of highly oxidized diterpenoid acids in Old Master paintings. , 2000, Journal of mass spectrometry : JMS.
[74] M. Saña,et al. Prehistoric Occupation of Banyoles Lakeshore: Results of Recent Excavations at La Draga Site, Girona, Spain , 2014 .
[75] R. Evershed,et al. Fuel for thought? Beeswax in lamps and conical cups from Late Minoan Crete , 1997, Antiquity.
[76] Jian-Xin Wang,et al. Simple synthesis of allobetulin, 28-oxyallobetulin and related biomarkers from betulin and betulinic acid catalysed by solid acids , 1998 .
[77] M. Regert,et al. Domestic activities and pottery use in the Iron Age Corsican settlement of Cuciurpula revealed by organic residue analysis , 2018, Journal of Archaeological Science: Reports.
[78] O. Nieuwenhuyse,et al. Bitumen in early ceramic art: Bitumen-painted ceramics from Late Neolithic tell Sabi Abyad (Syria) , 2004 .
[79] M. Buckley,et al. Identification of the earliest collagen- and plant-based coatings from Neolithic artefacts (Nahal Hemar cave, Israel) , 2016, Scientific Reports.