B-471 Extension of Completely Positive Cone Relaxation to Polynomial Optimization
暂无分享,去创建一个
[1] Franz Rendl,et al. Copositive and semidefinite relaxations of the quadratic assignment problem , 2009, Discret. Optim..
[2] Bastian Goldlücke,et al. Variational Analysis , 2014, Computer Vision, A Reference Guide.
[3] Mirjam Dür,et al. Copositive Programming – a Survey , 2010 .
[4] Etienne de Klerk,et al. Approximation of the Stability Number of a Graph via Copositive Programming , 2002, SIAM J. Optim..
[5] Akiko Yoshise,et al. On optimization over the doubly nonnegative cone , 2010, 2010 IEEE International Symposium on Computer-Aided Control System Design.
[6] Masakazu Muramatsu,et al. SparsePOP: a Sparse Semidefinite Programming Relaxation of Polynomial Optimization Problems , 2005 .
[7] Masakazu Kojima,et al. Exploiting Sparsity in SDP Relaxation of Polynomial Optimization Problems , 2012 .
[8] Jean B. Lasserre,et al. Global Optimization with Polynomials and the Problem of Moments , 2000, SIAM J. Optim..
[9] Etienne de Klerk,et al. Solving Standard Quadratic Optimization Problems via Linear, Semidefinite and Copositive Programming , 2002, J. Glob. Optim..
[10] C. Carathéodory. Über den Variabilitätsbereich der Koeffizienten von Potenzreihen, die gegebene Werte nicht annehmen , 1907 .
[11] Stanislav Busygin,et al. Copositive Programming , 2009, Encyclopedia of Optimization.
[12] Pablo A. Parrilo,et al. Semidefinite programming relaxations for semialgebraic problems , 2003, Math. Program..
[13] Samuel Burer,et al. On the copositive representation of binary and continuous nonconvex quadratic programs , 2009, Math. Program..
[14] Jos F. Sturm,et al. A Matlab toolbox for optimization over symmetric cones , 1999 .
[15] Samuel Burer,et al. Representing quadratically constrained quadratic programs as generalized copositive programs , 2012, Oper. Res. Lett..
[16] Franz Rendl,et al. A Copositive Programming Approach to Graph Partitioning , 2007, SIAM J. Optim..
[17] Masakazu Kojima,et al. A Quadratically Constrained Quadratic Optimization Model for Completely Positive Cone Programming , 2013, SIAM J. Optim..
[18] Gabriele Eichfelder,et al. On the set-semidefinite representation of nonconvex quadratic programs over arbitrary feasible sets , 2013, Optim. Lett..
[19] Masakazu Muramatsu,et al. Sums of Squares and Semidefinite Programming Relaxations for Polynomial Optimization Problems with Structured Sparsity , 2004 .