The Dynamic of Calcium Oxalate (CaOx) in Porang Corms (Amorphophallus muelleri Blume) at Different Harvest Time

The research aims to observe the influence of harvesting time on the change of calcium oxalate (CaOx) content and crystal density in Porang corms. The corms were harvested at different times, i.e., (1) two weeks before the plants shed (R0-1), (2) when the plants shed (R0), and (3) two weeks after the plants shed (R0+1). CaOx was obtained using the modified extracting method. Microscopic observations were obtained from the slices of the edge and center part of porang corms. Parameter observed including CaOx content, corm weight, shape, and density of CaOx crystal. CaOx content and crystal density in corms were analyzed using One way ANOVA. If the results are significant, it will be followed by Tukey Test α 0.05. In the meantime, the relation between CaOx content and corm weight was analyzed using Correlation Test Bivariate. The results showed that CaOx content was relatively higher in porang corms, i.e., 15.98 ± 0.60g/100g. On the other hand, the increasing of CaOx content might improve corm weight. The total density of druse, styloid, and prism crystal was pretty high in corms obtained when the plants shed compared to another harvest time, i.e., 1,494 ± 286; 31,280 ± 17,406 and 6,256 ± 1,533 crystals/cm2 . Raphide crystal density, by contrast, increased in corms obtained after the plants shed, i.e.,1,656 ± 368 crystals/cm2 . Total CaOx crystal density in the edge parts of corms harvested when the plants shed was proportionately higher than in the other harvest times, i.e., 12,292 ± 4,687.89 crystals/cm2 . In contrast, CaOx crystal densities in the center parts of corms were not much different at three harvesting times. The density of druse and prism crystals was somewhat higher in the center part of corms than in the edge parts. In opposition to, the density of raphide and styloid crystals was fairly higher in the edge part of corms than it was in the center parts. However, only raphide crystal density found in the edge and center part of corms was significantly affected by harvest time from all these results

[1]  Jia-Yun Chen,et al.  Modulation of Calcium Oxalate Crystal Growth and Protection from Oxidatively Damaged Renal Epithelial Cells of Corn Silk Polysaccharides with Different Molecular Weights , 2020, Oxidative medicine and cellular longevity.

[2]  J. Ouyang,et al.  Comparison of the adhesion of calcium oxalate monohydrate to HK-2 cells before and after repair using tea polysaccharides , 2019, International journal of nanomedicine.

[3]  N. Harijati,et al.  Effects of seeding material age, storage time, and tuber tissue zone on glucomannan content of Amorphophallus muelleri Blume , 2018, International Journal of Plant Biology.

[4]  N. Uren Calcium oxalate in soils, its origins and fate – a review , 2018 .

[5]  R. Mastuti,et al.  PENGARUH PERIODE TUMBUH DAN BAGIAN UMBI BERBEDA TERHADAP KERAPATAN KRISTAL KALSIUM OKSALAT (CaOx) DAN JENIS KRISTAL DRUSE DAN RAFIDA PADA UMBI TANAMAN PORANG (Amorphophallus muelleri Blume) , 2018 .

[6]  M. Osterrieth,et al.  Calcium oxalate crystal production and density at different phenological stages of soybean plants (Glycine max L.) from the southeast of the Pampean Plain, Argentina. , 2016, Plant biology.

[7]  E. Dotsika,et al.  Alarm Photosynthesis: Calcium Oxalate Crystals as an Internal CO2 Source in Plants1 , 2016, Plant Physiology.

[8]  N. Harijati,et al.  Variation of Calcium Oxalate (CaOx) Crystals in Porang Corms ( Amorphophallus muelleri Blume) at Different Harvest Time , 2016 .

[9]  Suhartati Suhartati,et al.  Tumbuhan Porang: Prospek Budidaya Sebagai Salah Satu Sistem Agroforestry , 2015 .

[10]  Jenny M. Dauer,et al.  Calcium oxalate contribution to calcium cycling in forests of contrasting nutrient status , 2014 .

[11]  Nunung Harijati,et al.  Pengaruh Waktu Panen Terhadap Kandungan Glukomannan Pada Umbi Porang (amorphophallus muelleri blume) Periode Tumbuh Ketiga , 2014 .

[12]  Kyky Herlyanti,et al.  EFEK PEMBERIAN GLUKOMANAN UMBI PORANG (Amorphophallus oncophyllus Prain ex Hook. f.) TERHADAP KADAR KOLESTEROL TOTAL DARAH TIKUS YANG DIBERI DIET TINGGI LEMAK , 2014 .

[13]  K. Konno,et al.  Synergistic Defensive Function of Raphides and Protease through the Needle Effect , 2014, PloS one.

[14]  N. Harijati,et al.  Pengaruh Pupuk Nitrogen terhadap Kerapatan Kristal Kalsium Oksalat pada Umbi Porang (Amorphophallus muelleri Blume) , 2014 .

[15]  Eva Fauziyah,et al.  STRATEGI PENGEMBANGAN ILES-ILES (Amorphophallus spp.) SEBAGAI HASIL HUTAN BUKAN KAYU (HHBK) DI KABUPATEN KUNINGAN, JAWA BARAT , 2013 .

[16]  N. Harijati,et al.  Variation of Calcium Oxalate (CaOx) Crystals in Porang (Amorphophallus muelleri Blume) , 2013 .

[17]  A. Babu,et al.  Urolithiasis and Its Causes- Short Review , 2013, The Journal of Phytopharmacology.

[18]  A. Mazen,et al.  Physiological and ultrastructural studies on calcium oxalate crystal formation in some plants , 2013 .

[19]  M. Gibernau,et al.  Distribution of calcium oxalate crystals in floral organs of Araceae in relation to pollination strategy. , 2012, American journal of botany.

[20]  P. A. Nakata,et al.  Plant calcium oxalate crystal formation, function, and its impact on human health , 2012, Frontiers in Biology.

[21]  Y. Rouzbehan,et al.  Effect of harvest date and nitrogen fertilization rate on the nutritive value of amaranth forage (Amaranthus hypochondriacus) , 2012 .

[22]  Singgih Santoso Aplikasi SPSS Pada Statistik Parametrik , 2012 .

[23]  B. Lestari KAJIAN ZPT ATONIK DALAM BERBAGAI KONSENTRASI DAN INTERVAL PENYEMPROTAN TERHADAP PRODUKTIVITAS TANAMAN BAWANG MERAH (ALLIUM ASCOLANICUM L.) , 2011 .

[24]  R. Mastuti,et al.  Kristal Kalsium Oksalat (CaOx) pada Porang (Amorphopallus muelleri Blume) yang Terpapar dan Tidak Terpapar Matahari , 2011 .

[25]  S. Indriyani POLA PERTUMBUHAN PORANG (Amorphophallus muelleri Blume) DAN PENGARUH LINGKUNGAN TERHADAP KANDUNGAN OKSALAT DAN GLUKOMANNAN UMBI , 2011 .

[26]  Kelvin Chan,et al.  Traditional uses and potential health benefits of Amorphophallus konjac K. Koch ex N.E.Br. , 2010, Journal of ethnopharmacology.

[27]  Kevin T. Smith,et al.  Calcium fertilization increases the concentration of calcium in sapwood and calcium oxalate in foliage of red spruce , 2009 .

[28]  Y. Ishii,et al.  Effect of clipping interval and nitrogen fertilisation on oxalate content in pot-grown napier grass (Pennisetum purpureum) , 2009 .

[29]  P. White,et al.  Biofortification of crops with seven mineral elements often lacking in human diets--iron, zinc, copper, calcium, magnesium, selenium and iodine. , 2009, The New phytologist.

[30]  Y. Ishii,et al.  Change of oxalate form in pot-grown napiergrass (Pennisetum purpureum Schumach) by application of calcium hydroxide. , 2009 .

[31]  Y. Ishii,et al.  Effect of Salinity Stress on Dry Matter Yield and Oxalate Content in Napiergrass (Pennisetum purpureum Schumach) , 2008 .

[32]  B. Mou Evaluation of Oxalate Concentration in the U.S. Spinach Germplasm Collection , 2008 .

[33]  Y. Ishii,et al.  Effects of levels of nitrogen fertilizer on oxalate and some mineral contents in napiergrass (Pennisetum purpureum Schumach) , 2008 .

[34]  Thomas Hartmann,et al.  The lost origin of chemical ecology in the late 19th century , 2008, Proceedings of the National Academy of Sciences.

[35]  O. Kawamura,et al.  Effect of Nitrogen Fertilization on Oxalate Content in Rhodesgrass, Guineagrass and Sudangrass , 2008 .

[36]  H. Horner,et al.  Calcium oxalate crystals in plants , 1980, The Botanical Review.

[37]  S. Jaffer,et al.  Calcium oxalate crystals , 2008 .

[38]  M. Ku,et al.  Correlations between Calcium Oxalate Crystals and Photosynthetic Activities in Palisade Cells of Shadeadapted Peperomia glabella , 2007 .

[39]  N. Kita,et al.  Seasonal change of nitrate and oxalate concentration in relation to the growth rate of spinach cultivars , 2006 .

[40]  Xiu-MeiJI,et al.  Oxalate Accumulation as Regulated by Nitrogen Forms and Its Relationship to Photosynthesis in Rice (Oryza sativa L.) , 2005 .

[41]  G. Volk,et al.  Calcium channels are involved in calcium oxalate crystal formation in specialized cells of Pistia stratiotes L. , 2004, Annals of botany.

[42]  V. Franceschi,et al.  Calcium oxalate formation in Lemna minor: physiological and ultrastructural aspects of high capacity calcium sequestration. , 2004, The New phytologist.

[43]  D. Ward,et al.  Gazelle Herbivory and Interpopulation Differences in Calcium Oxalate Content of Leaves of a Desert Lily , 1997, Journal of Chemical Ecology.

[44]  B. Molano-Flores,et al.  Herbivory and Calcium Concentrations Affect Calcium Oxalate Crystal Formation in Leaves ofSida (Malvaceae) , 2001 .

[45]  H. Horner,et al.  Calcium Oxalate Crystals in Developing Seeds of Soybean , 2001 .

[46]  A. Ross,et al.  Effect of Cooking on the Soluble and Insoluble Oxalate Content of Some New Zealand Foods , 2000 .

[47]  M. Caliskan The Metabolism of Oxalic Acid , 2000 .

[48]  P. Rudall,et al.  Calcium Oxalate Crystals in Monocotyledons: A Review of their Structure and Systematics , 1999 .

[49]  M. A. Webb Cell-Mediated Crystallization of Calcium Oxalate in Plants , 1999, Plant Cell.

[50]  J. Bradbury,et al.  The acridity of raphides from the edible aroids , 1998 .

[51]  H. Horner,et al.  Quantitative determination of calcium oxalate and oxalate in developing seeds of soybean (Leguminosae). , 1997, American journal of botany.

[52]  N. Sugiyama,et al.  Relationship between Oxalate Concentration and Leaf Position in Various Spinach Cultivars , 1994 .

[53]  M. C. Williams,et al.  Effect of Nitrogen, Sodium, and Potassium on Nitrate and Oxalate Concentration in Kikuyugrass , 1991, Weed Technology.

[54]  C. Brubaker,et al.  Development of epidermal crystals in leaflets of Stylosanthes guianensis (Leguminosae; Papilionoideae) , 1989 .

[55]  B. Libert,et al.  Oxalate in crop plants , 1987 .

[56]  B. Libert Genotypic and non-genetic variation of oxalate and malate content in rhubarb (Rheum spp. L.) , 1987 .

[57]  Y. Lindqvist,et al.  Structure of glycolate oxidase from spinach. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[58]  B. Libert,et al.  Oxalate content of seventy-eight rhubarb cultivars and its relation to some other characters , 1985 .

[59]  A. M. Davis The oxalate, tannin, crude fiber, and crude protein composition of young plants of some Atriplex species. , 1981 .

[60]  W. C. Graustein,et al.  Calcium oxalate accumulation and soil weathering in mats of the hypogeous fungus Hysterangium crassum , 1979 .

[61]  E. L. Thurston MORPHOLOGY, FINE STRUCTURE AND ONTOGENY OF THE STINGING EMERGENCE OF TRAGIA RAMOSA AND T. SAXICOLA (EUPHORBIACEAE) , 1976 .

[62]  R. C. Jones,et al.  Raphides with Barbs and Grooves in Xanthosoma sagittifolium (Araceae) , 1972, Science.

[63]  T. Kisaki,et al.  Glycolate and glyoxylate metabolism by isolated peroxisomes or chloroplasts. , 1969, Plant physiology.

[64]  J. B. F.,et al.  Physiological Plant Anatomy , 1914, Nature.