Predicate Logics on Display

The paper provides a uniform Gentzen-style proof-theoretic framework for various subsystems of classical predicate logic. In particular, predicate logics obtained by adopting van Behthem's modal perspective on first-order logic are considered. The Gentzen systems for these logics augment Belnap's display logic by introduction rules for the existential and the universal quantifier. These rules for ∀x and ∃x are analogous to the display introduction rules for the modal operators □ and ♦ and do not themselves allow the Barcan formula or its converse to be derived. En route from the minimal ‘modal’ predicate logic to full first-order logic, axiomatic extensions are captured by purely structural sequent rules.

[1]  Dirk Roorda,et al.  Dyadic Modalities and Lambek Calculus , 1993 .

[2]  D. Gabbay A General Theory of Structured Consequence Relations , 1995 .

[3]  Greg Restall,et al.  Display Logic and Gaggle Theory , 1995, Reports Math. Log..

[4]  Nuel Belnap,et al.  Linear Logic Displayed , 1989, Notre Dame J. Formal Log..

[5]  Johan van Benthem,et al.  Exploring logical dynamics , 1996, Studies in logic, language and information.

[6]  Nuel D. Belnap,et al.  The Display Problem , 1996 .

[7]  István Németi,et al.  Algebraization of quantifier logics, an introductory overview , 1991, Stud Logica.

[8]  Natasha Alechina,et al.  Generalized Quantification as Substructural Logic , 1996, J. Symb. Log..

[9]  Johan van Benthem,et al.  Back and Forth Between Modal Logic and Classical Logic , 1995, Log. J. IGPL.

[10]  J. Michael Dunn,et al.  Gaggle Theory: An Abstraction of Galois Connections and Residuation with Applications to Negation, Implication, and Various Logical Operations , 1990, JELIA.

[11]  R. Goldblatt Topoi, the Categorial Analysis of Logic , 1979 .

[12]  Pierre-Yves Schobbens,et al.  Counterfactuals and Updates as Inverse Modalities , 1996, J. Log. Lang. Inf..

[13]  Richard Montague Logical necessity, physical necessity, ethics, and quantifiers , 1960 .

[14]  Greg Restall,et al.  Displaying and Deciding Substructural Logics 1: Logics with Contraposition , 1998, J. Philos. Log..

[15]  Yde Venema,et al.  A modal logic of relations , 1999 .

[16]  M. van Lambalgen Natural Deduction for Generalized Quantifiers , 1996 .

[17]  M. de Rijke Extending modal logic , 1993 .

[18]  M. Kracht Power and Weakness of the Modal Display Calculus , 1996 .

[19]  Yde Venema A Modal Logic for Quantification and Substitution , 1994, Log. J. IGPL.

[20]  Steven T. Kuhn Quantifiers as modal operators , 1980 .

[21]  Melvin Fitting,et al.  Basic modal logic , 1993 .

[22]  Max J. Cresswell,et al.  A New Introduction to Modal Logic , 1998 .

[23]  Heinrich Wansing,et al.  Sequent Calculi for Normal Modal Proposisional Logics , 1994, J. Log. Comput..

[24]  Yde Venema,et al.  Many-dimensional Modal Logic , 1991 .

[25]  Heinrich Wansing A Proof-Theoretic Proof of Functional Completeness for Many Modal and Tense Logics , 1998 .

[26]  Rajeev Goré Cut-free Display Calculi for Relation Algebras , 1996, CSL.

[27]  Heinrich Wansing Strong Cut-elimination in Display Logic , 1995, Reports Math. Log..

[28]  Hao Wang,et al.  A survey of mathematical logic , 1963 .

[29]  Yde Venema Cylindric modal logic , 1993 .

[30]  Heinrich Wansing,et al.  A Full-Circle Theorem for Simple Tense Logic , 1997 .

[31]  Heinrich W Ansing DISPLAYING AS TEMPORALIZING Sequent Systems for Subintuitionistic Logics , 1997 .

[32]  Herbert B. Enderton,et al.  A mathematical introduction to logic , 1972 .