On Theory in Ecology

We argue for expanding the role of theory in ecology to accelerate scientific progress, enhance the ability to address environmental challenges, foster the development of synthesis and unification, and improve the design of experiments and large-scale environmental-monitoring programs. To achieve these goals, it is essential to foster the development of what we call efficient theories, which have several key attributes. Efficient theories are grounded in first principles, are usually expressed in the language of mathematics, make few assumptions and generate a large number of predictions per free parameter, are approximate, and entail predictions that provide well-understood standards for comparison with empirical data. We contend that the development and successive refinement of efficient theories provide a solid foundation for advancing environmental science in the era of big data.

[1]  Geoffrey West Wisdom in numbers. , 2013, Scientific American.

[2]  V. Grimm,et al.  Plant Interactions Alter the Predictions of Metabolic Scaling Theory , 2013, PloS one.

[3]  S. Hubbell,et al.  The evolutionary origins of mating failures and multiple mating , 2013 .

[4]  R. Condit,et al.  Testing metabolic theory with models of tree growth that include light competition , 2012 .

[5]  G. West,et al.  The importance of quantitative systemic thinking in medicine , 2012, The Lancet.

[6]  James H. Brown,et al.  Metabolic ecology : a scaling approach , 2012 .

[7]  Sydney Brenner,et al.  Turing centenary: Life's code script , 2012, Nature.

[8]  Steven F. Railsback,et al.  Agent-Based and Individual-Based Modeling: A Practical Introduction , 2011 .

[9]  J. Harte Maximum Entropy and Ecology: A Theory of Abundance, Distribution, and Energetics , 2011 .

[10]  S. Hubbell,et al.  The unified neutral theory of biodiversity and biogeography at age ten. , 2011, Trends in ecology & evolution.

[11]  J. P. Collins,et al.  The challenges and scope of theoretical biology. , 2011, Journal of theoretical biology.

[12]  Y. Iwasa,et al.  Neutral theory as a predictor of avifaunal extinctions after habitat loss , 2011, Proceedings of the National Academy of Sciences.

[13]  Samuel M. Scheiner,et al.  The Theory of Ecology , 2011 .

[14]  P. Marquet,et al.  Food web structure and body size: trophic position and resource acquisition , 2010 .

[15]  Richard J. Williams,et al.  Simple MaxEnt models explain food web degree distributions , 2010, Theoretical Ecology.

[16]  J. Harte,et al.  Biodiversity scales from plots to biomes with a universal species-area curve. , 2009, Ecology letters.

[17]  Daniel A. Beard,et al.  Strong Inference for Systems Biology , 2009, PLoS Comput. Biol..

[18]  Stephen J Cornell,et al.  Species-area curves, neutral models, and long-distance dispersal. , 2009, Ecology.

[19]  A. Magurran,et al.  Taking species abundance distributions beyond individuals. , 2009, Ecology letters.

[20]  James H Brown,et al.  Extensions and evaluations of a general quantitative theory of forest structure and dynamics , 2009, Proceedings of the National Academy of Sciences.

[21]  V. Savage,et al.  An integrative framework for stochastic, size-structured community assembly , 2009, Proceedings of the National Academy of Sciences.

[22]  J. Harte,et al.  Maximum entropy and the state-variable approach to macroecology. , 2008, Ecology.

[23]  Charles Anderson,et al.  The end of theory: The data deluge makes the scientific method obsolete , 2008 .

[24]  Samuel M. Scheiner,et al.  A general theory of ecology , 2008, Theoretical Ecology.

[25]  E. Leigh,et al.  Neutral theory: a historical perspective , 2007, Journal of evolutionary biology.

[26]  Nathan G. Swenson,et al.  A general integrative model for scaling plant growth, carbon flux, and functional trait spectra , 2007, Nature.

[27]  J. Platt Strong Inference , 2007 .

[28]  The Role of Theory in Advancing 21 st Century Biology : Catalyzing Transformative Research , 2007 .

[29]  Alicia Sánchez Hontana Facultad de Ciencias Biológicas , 2007 .

[30]  Owen L. Petchey,et al.  Foraging biology predicts food web complexity , 2006, Proceedings of the National Academy of Sciences.

[31]  Xabier Irigoien,et al.  Scaling the metabolic balance of the oceans. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[32]  S. Hubbell,et al.  Density dependence explains tree species abundance and diversity in tropical forests , 2005, Nature.

[33]  T. Daufresne,et al.  Plant coexistence depends on ecosystem nutrient cycles: extension of the resource-ratio theory. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[34]  James H. Brown,et al.  The origin of allometric scaling laws in biology from genomes to ecosystems: towards a quantitative unifying theory of biological structure and organization , 2005, Journal of Experimental Biology.

[35]  James H. Brown,et al.  Linking the global carbon cycle to individual metabolism , 2005 .

[36]  Nicolas Mouquet,et al.  A Critical Review of Twenty Years’ Use of the Resource‐Ratio Theory , 2005, The American Naturalist.

[37]  James H. Brown,et al.  The rate of DNA evolution: effects of body size and temperature on the molecular clock. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[38]  Joel E. Cohen,et al.  Mathematics Is Biology's Next Microscope, Only Better; Biology Is Mathematics' Next Physics, Only Better , 2004, PLoS biology.

[39]  J. Fargione,et al.  DOES METABOLIC THEORY APPLY TO COMMUNITY ECOLOGY? IT'S A MATTER OF SCALE , 2004 .

[40]  P. Marquet,et al.  METABOLIC ECOLOGY: LINKING INDIVIDUALS TO ECOSYSTEMS , 2004 .

[41]  James H. Brown,et al.  Toward a metabolic theory of ecology , 2004 .

[42]  Benjamin Gilbert,et al.  Neutrality, niches, and dispersal in a temperate forest understory. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[43]  Daniel Simberloff,et al.  Community Ecology: Is It Time to Move On? , 2004, The American Naturalist.

[44]  Lev R Ginzburg,et al.  Rules of thumb for judging ecological theories. , 2004, Trends in ecology & evolution.

[45]  Geoffrey B. West,et al.  Effects of Body Size and Temperature on Population Growth , 2004, The American Naturalist.

[46]  R. May Uses and Abuses of Mathematics in Biology , 2004, Science.

[47]  Anders Logg,et al.  The Unreasonable Effectiveness of Mathematics in the Natural Sciences , 2004 .

[48]  H. Spatz Circulation, metabolic rate, and body size in mammals , 2004, Journal of Comparative Physiology B.

[49]  Evan P. Economo,et al.  Scaling metabolism from organisms to ecosystems , 2003, Nature.

[50]  John Harte,et al.  Toward a Synthesis of the Newtonian and Darwinian Worldviews , 2002 .

[51]  James H. Brown,et al.  A general model for ontogenetic growth , 2001, Nature.

[52]  James H. Brown,et al.  Effects of Size and Temperature on Metabolic Rate , 2001, Science.

[53]  T. Allen,et al.  Dragnet Ecology—“Just the Facts, Ma'am”: The Privilege of Science in a Postmodern World , 2001 .

[54]  P. Nonacs State dependent behavior and the Marginal Value Theorem , 2001 .

[55]  S. Funtowicz,et al.  Science for the PostNormal Age , 2001 .

[56]  S. Kooijman,et al.  From molecules to ecosystems through dynamic energy budget models. , 2000 .

[57]  Sebastiaan A.L.M. Kooijman,et al.  Dynamic Energy and Mass Budgets in Biological Systems , 2000 .

[58]  C. Poole Models and theories , 2000 .

[59]  James H. Brown,et al.  A General Model for the Origin of Allometric Scaling Laws in Biology , 1997, Science.

[60]  M. A. Leibold The Niche Concept Revisited: Mechanistic Models and Community Context , 1995 .

[61]  S. Pickett,et al.  Ecological Understanding: The Nature of Theory and the Theory of Nature , 1994 .

[62]  Lawrence B. Slobodkin,et al.  A Critique for Ecology , 1991 .

[63]  P. Gowaty,et al.  Sex Ratios of Nestling and Fledgling Red-Cockaded Woodpeckers (Picoides borealis) Favor Males , 1985, The American Naturalist.

[64]  G. Pyke Optimal Foraging Theory: A Critical Review , 1984 .

[65]  R. Peters,et al.  The effects of body size and temperature on metabolic rate of organisms , 1983 .

[66]  D. Tilman Resource competition and community structure. , 1983, Monographs in population biology.

[67]  E. Jaynes On the rationale of maximum-entropy methods , 1982, Proceedings of the IEEE.

[68]  L. Laudan,et al.  Progress and its problems: Toward a theory of scientific growth , 1978 .

[69]  G. Box Science and Statistics , 1976 .

[70]  E. Charnov Optimal foraging, the marginal value theorem. , 1976, Theoretical population biology.

[71]  R. Macarthur,et al.  On Optimal Use of a Patchy Environment , 1966, The American Naturalist.

[72]  J. Platt Strong Inference: Certain systematic methods of scientific thinking may produce much more rapid progress than others. , 1964, Science.

[73]  R. Macarthur,et al.  COMPETITION, HABITAT SELECTION, AND CHARACTER DISPLACEMENT IN A PATCHY ENVIRONMENT. , 1964, Proceedings of the National Academy of Sciences of the United States of America.

[74]  Max Kleiber,et al.  The Fire of Life: An Introduction to Animal Energetics , 1975 .

[75]  E. Nagel The structure of science : problems in the logic of scientific explanation , 1961 .

[76]  E. Wigner The Unreasonable Effectiveness of Mathematics in the Natural Sciences (reprint) , 1960 .

[77]  R. A. Fisher,et al.  The Genetical Theory of Natural Selection , 1931 .

[78]  W. Bateson The Methods and Scope of Genetics: An Inaugural Lecture Delivered 23 October 1908 , 2009 .

[79]  W. Bateson The methods and scope of genetics , 1908 .

[80]  Svante Arrhenius,et al.  Über die Reaktionsgeschwindigkeit bei der Inversion von Rohrzucker durch Säuren , 1889 .