Relevant Plasma Parameters for Certification

The focus of this chapter is to reveal the components that make cold atmospheric plasma (CAP) an important tool for medical research. In order to breach the step from research to hospital, a decisive understanding of not just their biomedical efficiency but also associated potential risks when applying CAP is required. The overview of a whole cocktail of six components created within the plasma and the revealed effects they have are summarized in this chapter. A selection of components like ozone or ultra-violet radiation is discussed and a control to inhibit unwanted effects is derived. In order to be able to characterize the CAP from the point of its basic physical properties towards the biomedical relevant output of components, the present state of diagnostics is reviewed. It is revealed, that the present limitations in understanding the optimal composition of the plasma “cocktail” lies in the determination of the electrical field, the relevant ions and finally in the clear separation of each component. Finally, the consideration of synergy effects is required to finalize and formulate a “dose” for clinical applications.

[1]  T. Kocher,et al.  The hairline plasma: An intermittent negative dc-corona discharge at atmospheric pressure for plasma medical applications , 2010 .

[2]  Seth A. Norberg,et al.  Atmospheric pressure plasma jets interacting with liquid covered tissue: touching and not-touching the liquid , 2014 .

[3]  Y. Im,et al.  Modelling of atmospheric pressure plasmas for biomedical applications , 2011 .

[4]  G Daeschlein,et al.  Alleviation of chronic venous leg ulcers with a hand‐held dielectric barrier discharge plasma generator (PlasmaDerm® VU‐2010): results of a monocentric, two‐armed, open, prospective, randomized and controlled trial (NCT01415622) , 2015, Journal of the European Academy of Dermatology and Venereology : JEADV.

[5]  P. Bruggeman,et al.  Absolute OH density measurements by broadband UV absorption in diffuse atmospheric-pressure He–H2O RF glow discharges , 2012 .

[6]  S. Reuter,et al.  Absolute atomic oxygen density profiles in the discharge core of a microscale atmospheric pressure plasma jet , 2008 .

[7]  Steffen Brinckmann,et al.  Photons and particles emitted from cold atmospheric-pressure plasma inactivate bacteria and biomolecules independently and synergistically , 2013, Journal of The Royal Society Interface.

[8]  Jean Dahdah,et al.  Single Shot and Vectorial Characterization of Intense Electric Field in Various Environments With Pigtailed Electrooptic Probe , 2014, IEEE Transactions on Plasma Science.

[9]  L. Stollenwerk,et al.  Surface charge transport and decay in dielectric barrier discharges , 2014 .

[10]  Ronny Brandenburg,et al.  Atmospheric Pressure Plasma Jet for Medical Therapy: Plasma Parameters and Risk Estimation , 2009 .

[11]  K. Weltmann,et al.  Tracking plasma generated H2O2 from gas into liquid phase and revealing its dominant impact on human skin cells , 2014 .

[12]  E. García-Caurel,et al.  Experimentally obtained values of electric field of an atmospheric pressure plasma jet impinging on a dielectric surface , 2013 .

[13]  E. Candelario-Jalil,et al.  Therapeutic efficacy of ozone in patients with diabetic foot. , 2005, European journal of pharmacology.

[14]  J. Paillol,et al.  High-resolution measurements of the electric field at the streamer arrival to the cathode: a unification of the streamer-initiated gas-breakdown mechanism. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[15]  Dario Farina,et al.  Electrical stimulation for neuromuscular testing and training: state-of-the art and unresolved issues , 2011, European Journal of Applied Physiology.

[16]  Thomas von Woedtke,et al.  Introduction to DIN-specification 91315 based on the characterization of the plasma jet kINPen® MED , 2016 .

[17]  S. Reuter,et al.  Measurement of hydroxyl radical (OH) concentration in an argon RF plasma jet by laser-induced fluorescence , 2013 .

[18]  W. Viöl,et al.  Low Temperature Plasma Treatment of Living Human Cells , 2007 .

[19]  Ronny Brandenburg,et al.  The Role of Acidification for Antimicrobial Activity of Atmospheric Pressure Plasma in Liquids , 2010 .

[20]  M. Kushner,et al.  Atmospheric pressure ionization waves propagating through a flexible high aspect ratio capillary channel and impinging upon a target , 2012 .

[21]  Chuji Wang,et al.  Determination of OH Radicals in an Atmospheric Pressure Helium Microwave Plasma Jet , 2011, IEEE Transactions on Plasma Science.

[22]  Jun‐Seok Oh,et al.  Time-resolved mass spectroscopic studies of an atmospheric-pressure helium microplasma jet , 2011 .

[23]  P. Bruggeman,et al.  Corrigendum: Power dissipation, gas temperatures and electron densities of cold atmospheric pressure helium and argon RF plasma jets , 2011 .

[24]  R. Brandenburg,et al.  On the Vacuum Ultraviolet Radiation of a Miniaturized Non-thermal Atmospheric Pressure Plasma Jet , 2007 .

[25]  T. Zollner,et al.  Narrowband UVB and cream psoralen-UVA combination therapy for plaque-type psoriasis. , 2004, Journal of the American Academy of Dermatology.

[26]  K. Weltmann,et al.  Impact of Electrode Design, Supply Voltage and Interelectrode Distance on Safety Aspects and Characteristics of a Medical DBD Plasma Source , 2013 .

[27]  K. V. Kozlov,et al.  Spatio-temporally resolved spectroscopic diagnostics of the barrier discharge in air at atmospheric pressure , 2001 .

[28]  Mark J. Kushner,et al.  Multiple microdischarge dynamics in dielectric barrier discharges , 1998 .

[29]  A. Arnold,et al.  In Vitro Susceptibility of Important Skin and Wound Pathogens Against Low Temperature Atmospheric Pressure Plasma Jet (APPJ) and Dielectric Barrier Discharge Plasma (DBD) , 2012 .

[30]  J. Walsh,et al.  Electron density measurement in atmospheric pressure plasma jets: Stark broadening of hydrogenated and non-hydrogenated lines , 2015 .

[31]  A. Bogaerts,et al.  Kinetic modelling for an atmospheric pressure argon plasma jet in humid air , 2013 .

[32]  R. Brandenburg,et al.  Development of Barrier Discharges: Operation Modes and Structure Formation , 2012 .

[33]  R. Brandenburg,et al.  Power measurement for an atmospheric pressure plasma jet at different frequencies: distribution in the core plasma and the effluent , 2017 .

[34]  U. Fantz Basics of plasma spectroscopy , 2006 .

[35]  T. von Woedtke,et al.  Skin decontamination by low-temperature atmospheric pressure plasma jet and dielectric barrier discharge plasma. , 2012, The Journal of hospital infection.

[36]  T. Gambichler,et al.  A randomized controlled study of low-dose UVA1, medium-dose UVA1, and narrowband UVB phototherapy in the treatment of localized scleroderma. , 2006, Journal of the American Academy of Dermatology.

[37]  A. Fridman,et al.  Effects of Non-Thermal Plasma on Mammalian Cells , 2011, PloS one.

[38]  F. Stang,et al.  Improvement of cutaneous microcirculation by cold atmospheric plasma (CAP): Results of a controlled, prospective cohort study. , 2016, Microvascular research.

[39]  M Landthaler,et al.  A first prospective randomized controlled trial to decrease bacterial load using cold atmospheric argon plasma on chronic wounds in patients , 2010, The British journal of dermatology.

[40]  Kim Jungmin,et al.  Amendment of the Inspection Standard for Diagnostic Radiation Equipment Applying IEC 60601-1-3: Medical Electrical Equipment – Part 1-3: General Requirements for Basic Safety and Essential Performance – Collateral Standard: Radiation Protection in Diagnostic X-ray Equipment , 2018 .

[41]  Ronny Brandenburg,et al.  Atmospheric pressure plasma jets: an overview of devices and new directions , 2015 .

[42]  R. Brandenburg,et al.  Spatio-temporal development of microdischarges in a surface barrier discharge arrangement in air at atmospheric pressure , 2010 .

[43]  W. Stolz,et al.  Cold atmospheric argon plasma treatment may accelerate wound healing in chronic wounds: Results of an open retrospective randomized controlled study in vivo , 2013 .

[44]  K. Ito,et al.  Absolute absorption cross-section measurements of Schumann–Runge continuum of O2 at 90 and 295 K , 2005 .

[45]  Michael Landthaler,et al.  Randomized placebo‐controlled human pilot study of cold atmospheric argon plasma on skin graft donor sites , 2013, Wound repair and regeneration : official publication of the Wound Healing Society [and] the European Tissue Repair Society.

[46]  K. Weltmann,et al.  Scar formation of laser skin lesions after cold atmospheric pressure plasma (CAP) treatment: A clinical long term observation , 2013 .

[47]  K. Weltmann,et al.  Controlling the NO production of an atmospheric pressure plasma jet , 2012 .

[48]  N. Sadeghi,et al.  Space resolved density measurements of argon and helium metastable atoms in radio-frequency generated He-Ar micro-plasmas , 2010 .

[49]  Seth A. Norberg,et al.  Formation of reactive oxygen and nitrogen species by repetitive negatively pulsed helium atmospheric pressure plasma jets propagating into humid air , 2015 .

[50]  L. Raja,et al.  Computational study of cold atmospheric nanosecond pulsed helium plasma jet in air , 2011 .

[51]  K. Weltmann,et al.  The plasma jet kINPen – A powerful tool for wound healing , 2016 .

[52]  J. Krutmann,et al.  High-dose UVA1 therapy in the treatment of patients with atopic dermatitis. , 1992, Journal of the American Academy of Dermatology.

[53]  D. Leibfritz,et al.  Free radicals and antioxidants in normal physiological functions and human disease. , 2007, The international journal of biochemistry & cell biology.

[54]  D. Häder,et al.  UV-induced DNA damage and repair: a review , 2002, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.

[55]  H. Haller,et al.  Got Milk? Breastfeeding and Milk Analysis of a Mother on Chronic Hemodialysis , 2015, PloS one.

[56]  Stephan Reuter,et al.  Ambient air particle transport into the effluent of a cold atmospheric-pressure argon plasma jet investigated by molecular beam mass spectrometry , 2013 .

[57]  Tobias Kisch,et al.  The repetitive use of non-thermal dielectric barrier discharge plasma boosts cutaneous microcirculatory effects. , 2016, Microvascular research.

[58]  K. Weltmann,et al.  Miniaturized non-thermal atmospheric pressure plasma jet—characterization of self-organized regimes , 2009 .

[59]  Gary Friedman,et al.  Control of methicillin-resistant Staphylococcus aureus in planktonic form and biofilms: a biocidal efficacy study of nonthermal dielectric-barrier discharge plasma. , 2010, American journal of infection control.

[60]  A. Kramer,et al.  Effects of tissue-tolerable plasma on psoriasis vulgaris treatment compared to conventional local treatment: A pilot study , 2014 .

[61]  R. Brandenburg,et al.  On the spatio-temporal dynamics of a self-pulsed nanosecond transient spark discharge: a spectroscopic and electrical analysis , 2013 .

[62]  A. Clyne,et al.  Endothelial Cell Proliferation is Enhanced by Low Dose Non-Thermal Plasma Through Fibroblast Growth Factor-2 Release , 2010, Annals of Biomedical Engineering.

[63]  Martin Polak,et al.  Low temperature atmospheric pressure plasma sources for microbial decontamination , 2011 .

[64]  Peter Awakowicz,et al.  Non-Thermal Dielectric Barrier Discharge (DBD) Effects on Proliferation and Differentiation of Human Fibroblasts Are Primary Mediated by Hydrogen Peroxide , 2015, PloS one.

[65]  Seth A. Norberg,et al.  Propagation mechanisms of guided streamers in plasma jets: the influence of electronegativity of the surrounding gas , 2015 .

[66]  K. Weltmann,et al.  Laser schlieren deflectometry for temperature analysis of filamentary non-thermal atmospheric pressure plasma. , 2012, The Review of scientific instruments.

[67]  G. Isbary,et al.  Test for bacterial resistance build-up against plasma treatment , 2012 .

[68]  James C. Weaver,et al.  Electroporation: a unified, quantitative theory of reversible electrical breakdown and mechanical rupture in artificial planar bilayer membranes☆ , 1991 .

[69]  David B. Graves,et al.  Reactive species in non-equilibrium atmospheric-pressure plasmas: Generation, transport, and biological effects , 2016 .

[70]  K. Martus,et al.  VUV emission from a cylindrical dielectric barrier discharge in Ar and in Ar/N2 and Ar/air mixtures , 2005 .

[71]  P. Bruggeman,et al.  Nitric oxide density distributions in the effluent of an RF argon APPJ: effect of gas flow rate and substrate , 2014 .

[72]  W. Stolz,et al.  A randomized two‐sided placebo‐controlled study on the efficacy and safety of atmospheric non‐thermal argon plasma for pruritus , 2013, Journal of the European Academy of Dermatology and Venereology : JEADV.

[73]  Bruce E. Stuck,et al.  Guidelines on limits of exposure to ultraviolet radiation of wavelengths between 180 nm and 400 nm (incoherent optical radiation). , 2004, Health physics.

[74]  M. Laroussi,et al.  The evolution of atmospheric-pressure low-temperature plasma jets: jet current measurements , 2012 .

[75]  M. Janda,et al.  Measurement of the electron density in Transient Spark discharge , 2014 .

[76]  Gregory Fridman,et al.  Blood Coagulation and Living Tissue Sterilization by Floating-Electrode Dielectric Barrier Discharge in Air , 2006 .

[77]  D. Gökçay,et al.  Quantification of the effects of transcutaneous electrical nerve stimulation with functional magnetic resonance imaging: a double-blind randomized placebo-controlled study. , 2010, Archives of physical medicine and rehabilitation.

[78]  K. Weltmann,et al.  Atomic oxygen in a cold argon plasma jet: TALIF spectroscopy in ambient air with modelling and measurements of ambient species diffusion , 2012 .

[79]  E. Szili,et al.  A ‘tissue model’ to study the plasma delivery of reactive oxygen species , 2014 .

[80]  Klaus-Dieter Weltmann,et al.  Spatially and temporally resolved measurements of argon metastable atoms in the effluent of a cold atmospheric pressure plasma jet , 2010 .

[81]  H. Wagner,et al.  Surface charge accumulation and discharge development in diffuse and filamentary barrier discharges operating in He, N2 and mixtures , 2012 .

[82]  Yoon Ho Choi,et al.  Electron density and temperature measurement method by using emission spectroscopy in atmospheric pressure nonequilibrium nitrogen plasmas , 2006 .

[83]  R. Snyders,et al.  Absolute Concentration of OH Radicals in Atmospheric Pressure Glow Discharges with a Liquid Electrode Measured by Laser-Induced Fluorescence Spectroscopy , 2011 .

[84]  Dezhen Wang,et al.  Two-dimensional numerical study of an atmospheric pressure helium plasma jet with dual-power electrode , 2015 .

[85]  K. Weltmann,et al.  Back and forth directed plasma bullets in a helium atmospheric pressure needle-to-plane discharge with oxygen admixtures , 2012 .

[86]  K. Weltmann,et al.  Detection of ozone in a MHz argon plasma bullet jet , 2012 .

[87]  J. Schuette,et al.  The acidification of lipid film surfaces by non-thermal DBD at atmospheric pressure in air , 2009 .

[88]  Ronny Brandenburg,et al.  Atmospheric pressure discharge filaments and microplasmas: physics, chemistry and diagnostics , 2013 .

[89]  T. von Woedtke,et al.  Antimicrobial Effects of UV and VUV Radiation of Nonthermal Plasma Jets , 2009, IEEE Transactions on Plasma Science.

[90]  M Landthaler,et al.  Successful and safe use of 2 min cold atmospheric argon plasma in chronic wounds: results of a randomized controlled trial , 2012, The British journal of dermatology.

[91]  N. Bibinov,et al.  Relative and absolute intensity calibrations of a modern broadband echelle spectrometer , 2007 .

[92]  K. Weltmann,et al.  Phase-resolved measurement of electric charge deposited by an atmospheric pressure plasma jet on a dielectric surface , 2014 .

[93]  G. Naidis Modelling of streamer propagation in atmospheric-pressure helium plasma jets , 2010 .

[94]  N. Sadeghi,et al.  Electron properties in an atmospheric helium plasma jet determined by Thomson scattering , 2014 .

[95]  M. Jünger,et al.  In Vitro Killing of Clinical Fungal Strains by Low-Temperature Atmospheric-Pressure Plasma Jet , 2011, IEEE Transactions on Plasma Science.

[96]  T. von Woedtke,et al.  Experimental Recovery of CO2-Laser Skin Lesions by Plasma Stimulation , 2012 .

[97]  C. E. Brion,et al.  Absolute optical oscillator strengths for discrete and continuum photoabsorption of molecular nitrogen (11–200 eV) , 1993 .

[98]  Jean-Pierre Boeuf,et al.  Dynamics of a guided streamer (‘plasma bullet’) in a helium jet in air at atmospheric pressure , 2013 .

[99]  K. Schoenbach,et al.  Nanosecond, high‐intensity pulsed electric fields induce apoptosis in human cells , 2003, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[100]  R. Boswell,et al.  Measurement of the electron density in atmospheric-pressure low-temperature argon discharges by line-ratio method of optical emission spectroscopy , 2009 .

[101]  Dezhen Wang,et al.  Stark broadening measurement of the electron density in an atmospheric pressure argon plasma jet with double-power electrodes , 2010 .

[102]  K. Weltmann,et al.  Time-resolved ion density determination by electrical current measurements in an atmospheric-pressure argon plasma , 2014 .

[103]  Peter Awakowicz,et al.  The topical use of non-thermal dielectric barrier discharge (DBD): nitric oxide related effects on human skin. , 2015, Nitric oxide : biology and chemistry.

[104]  L. Re,et al.  Ozone therapy: clinical and basic evidence of its therapeutic potential. , 2008, Archives of medical research.

[105]  S. Emmert,et al.  Low-temperature plasma--a prospective microbicidal tool. , 2012, Recent patents on anti-infective drug discovery.

[106]  N. Bibinov,et al.  Characterization of DBD plasma source for biomedical applications , 2009 .

[107]  K. Weltmann,et al.  Correlation of phase resolved current, emission and surface charge measurements in an atmospheric pressure helium jet , 2015 .

[108]  H. Wagner,et al.  Systematic investigation of the barrier discharge operation in helium, nitrogen, and mixtures: discharge development, formation and decay of surface charges , 2014 .

[109]  H. Purwins,et al.  Spatially resolved surface-charge measurement in a planar dielectric-barrier discharge system. , 2007, Physical review letters.

[110]  Stephan Reuter,et al.  Plasmas for medicine , 2013 .

[111]  P. Bruggeman,et al.  Absolute OH density measurements in the effluent of a cold atmospheric-pressure Ar–H2O RF plasma jet in air , 2013 .

[112]  A. Fridman,et al.  Decontamination of Surfaces From Extremophile Organisms Using Nonthermal Atmospheric-Pressure Plasmas , 2009, IEEE Transactions on Plasma Science.

[113]  A. Kramer,et al.  In vivo skin treatment with tissue‐tolerable plasma influences skin physiology and antioxidant profile in human stratum corneum , 2012, Experimental dermatology.

[114]  G. Sretenović,et al.  Spatio-temporally resolved electric field measurements in helium plasma jet , 2014 .

[115]  K. Weltmann,et al.  Quantitative detection of plasma-generated radicals in liquids by electron paramagnetic resonance spectroscopy , 2013 .

[116]  A. Fridman,et al.  DNA damage in mammalian cells by non-thermal atmospheric pressure microsecond pulsed dielectric barrier discharge plasma is not mediated by ozone , 2010, 2010 Abstracts IEEE International Conference on Plasma Science.

[117]  D. Roschdestwensky,et al.  Anomale Dispersion im Natriumdampf , 1912 .

[118]  K. Weltmann,et al.  On the plasma chemistry of a cold atmospheric argon plasma jet with shielding gas device , 2016 .

[119]  A. Kramer,et al.  Combined antibacterial effects of tissue‐tolerable plasma and a modern conventional liquid antiseptic on chronic wound treatment , 2015, Journal of biophotonics.

[120]  Gregor E. Morfill,et al.  Characterization of microwave plasma torch for decontamination , 2008 .

[121]  B. Ganguly,et al.  Spatiotemporally resolved Ar (1s5) metastable measurements in a streamer-like He/Ar atmospheric pressure plasma jet , 2010 .

[122]  Gregory Fridman,et al.  Mechanism of Blood Coagulation by Nonthermal Atmospheric Pressure Dielectric Barrier Discharge Plasma , 2007, IEEE Transactions on Plasma Science.

[123]  V. Puech,et al.  Analysis of conductive target influence in plasma jet experiments through helium metastable and electric field measurements , 2017 .

[124]  A. Helmke,et al.  Tempo-spatially Resolved Ozone Characteristics During Single-electrode Dielectric Barrier Discharge (SE-DBD) Operation against Metal and Porcine Skin Surfaces , 2014 .