In recent optical flow experiments on a transparent volute-type radial centrifugal pump, an accumulation of air bubbles to adherent gas pockets within the impeller blade channels was observed. A transition of unsteady bubbly flow towards an attached gas pocket at the blade suction side was found for increasing air loading of the liquid water phase. This steadily attached pocket shows a distinctive unsteady wake. A reproduction of the transition from bubbly to pocket flow in a three-dimensional flow simulation demands the treatment of dispersed bubbly flow, on the one hand, and of coherent air regions, on the other hand. Therefore, a hybrid flow solver is adopted based on an Euler-Euler two-fluid method for dispersed flows and features Volume-of-Fluid properties when air accumulations form. A scale-adaptive turbulence model is utilized to account for highly unsteady flow regions. For the time being, a monodisperse bubble size distribution is assumed for the dispersed part of the flow. For an operation range close to the design point and rising air loading, the flow transition from bubbly to pocket flow is well captured by the hybrid simulation method. Even an alternating pocket flow in between bubbly and pocket flow regime is predicted. The simulation method is still limited by an appropriate choice of a monodisperse bubble diameter. Therefore, the disperse model part of the hybrid flow solver will be coupled with population balance and bubble interaction models in future studies.