High performance and low power dynamic circuit design

Dynamic circuit design techniques can provide high speed operation at lower silicon area requirements, compared to full static CMOS designs. In this paper, we present a memoryless pipeline dynamic design technique with a pre-evaluation phase hidden inside the precharge phase. The combinational logic is implemented with dynamic circuits that offer the desirable high speed operation while the memory elements are eliminated due to an intelligent three phase clocking scheme. According to simulation results high quality designs can be achieved, in terms of performance, energy consumption and area, with respect to alternative dynamic design styles.

[1]  M.A. Horowitz,et al.  Skew-tolerant domino circuits , 1997, 1997 IEEE International Solids-State Circuits Conference. Digest of Technical Papers.

[2]  Ali Afzali-Kusha,et al.  Clock Delayed Domino Logic With Efficient Variable Threshold Voltage Keeper , 2007, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[3]  C. M. Files,et al.  A Mature Methodology for Implementing Multi-Valued Logic in Silicon , 2008, 38th International Symposium on Multiple Valued Logic (ismvl 2008).

[4]  Yiorgos Tsiatouhas,et al.  The use of pre-evaluation phase in dynamic CMOS logic , 2005, IEEE Computer Society Annual Symposium on VLSI: New Frontiers in VLSI Design (ISVLSI'05).

[5]  Yiorgos Tsiatouhas,et al.  Memory-Less Pipeline Dynamic Circuit Design Technique , 2010, 2010 IEEE Computer Society Annual Symposium on VLSI.

[6]  Graham A. Jullien,et al.  Fast adders using enhanced multiple-output domino logic , 1997 .

[7]  D. Timmermann,et al.  Dynamic Circuit Techniques in Deep Submicron Technologies: Domino Logic reconsidered , 2006, 2006 IEEE International Conference on IC Design and Technology.

[8]  Sung-Mo Kang,et al.  Improved domino structures effective for high performance design , 1999 .

[9]  Samuel D. Naffziger,et al.  The implementation of the Itanium 2 microprocessor , 2002, IEEE J. Solid State Circuits.

[10]  Spiridon Nikolaidis,et al.  Low-power/low-swing domino CMOS logic , 1998, ISCAS '98. Proceedings of the 1998 IEEE International Symposium on Circuits and Systems (Cat. No.98CH36187).

[11]  Sanu Mathew,et al.  A 9-GHz 65-nm Intel® Pentium 4 Processor Integer Execution Unit , 2007, IEEE J. Solid State Circuits.

[12]  Jan M. Rabaey,et al.  Digital Integrated Circuits: A Design Perspective , 1995 .

[13]  Christer Svensson,et al.  New domino logic precharged by clock and data , 1993 .

[14]  David Harris,et al.  Skew-Tolerant Circuit Design , 2000 .

[15]  E. You,et al.  A third-generation SPARC V9 64-b microprocessor , 2000, IEEE Journal of Solid-State Circuits.

[16]  Muhammad E. S. Elrabaa,et al.  A contention-free domino logic for scaled-down CMOS technologies with ultra low threshold voltages , 2000, 2000 IEEE International Symposium on Circuits and Systems. Emerging Technologies for the 21st Century. Proceedings (IEEE Cat No.00CH36353).

[17]  Harold S. Stone,et al.  A Parallel Algorithm for the Efficient Solution of a General Class of Recurrence Equations , 1973, IEEE Transactions on Computers.

[18]  R. Krishnamurthy,et al.  A 9GHz 65nm Intel Pentium 4 Processor Integer Execution Core , 2006, 2006 IEEE International Solid State Circuits Conference - Digest of Technical Papers.