The state of SAT

The papers in this special issue originated at SAT 2001, the Fourth International Symposium on the Theory and Applications of Satisfiability Testing. This foreword reviews the current state of satisfiability testing and places the papers in this issue in context.

[1]  Eli Ben-Sasson,et al.  Near Optimal Separation Of Tree-Like And General Resolution , 2004, Comb..

[2]  Béla Bollobás,et al.  The scaling window of the 2‐SAT transition , 1999, Random Struct. Algorithms.

[3]  Randall Davis,et al.  Diagnostic Reasoning Based on Structure and Behavior , 1984, Artif. Intell..

[4]  Bart Selman,et al.  Generating Satisfiable Problem Instances , 2000, AAAI/IAAI.

[5]  Steven Prestwich,et al.  Local Search on SAT-Encoded CSPs , 2003 .

[6]  Benjamin W. Wah,et al.  A Discrete Lagrangian-Based Global-Search Method for Solving Satisfiability Problems , 1996, J. Glob. Optim..

[7]  Tad Hogg,et al.  Phase Transitions and the Search Problem , 1996, Artif. Intell..

[8]  Maria Luisa Bonet,et al.  On the Relative Complexity of Resolution Refinements and Cutting Planes Proof Systems , 2000, SIAM J. Comput..

[9]  David Zuckerman,et al.  Optimal speedup of Las Vegas algorithms , 1993, [1993] The 2nd Israel Symposium on Theory and Computing Systems.

[10]  Peter van Beek,et al.  Constraint tightness and looseness versus local and global consistency , 1997, JACM.

[11]  Sérgio Vale Aguiar Campos,et al.  Symbolic Model Checking , 1993, CAV.

[12]  Zhe Wu,et al.  Trap Escaping Strategies in Discrete Lagrangian Methods for Solving Hard Satisfiability and Maximum Satisfiability Problems , 1999, AAAI/IAAI.

[13]  Balakrishnan Krishnamurthy Short proofs for tricky formulas , 2004, Acta Informatica.

[14]  James M. Crawford,et al.  The Minimal Disagreement Parity Problem as a Hard Satisfiability Problem , 1995 .

[15]  Joachim P. Walser Solving Linear Pseudo-Boolean Constraint Problems with Local Search , 1997, AAAI/IAAI.

[16]  Armin Biere,et al.  Symbolic Model Checking without BDDs , 1999, TACAS.

[17]  Fabio Massacci,et al.  Using Walk-SAT and Rel-Sat for Cryptographic Key Search , 1999, IJCAI.

[18]  Bart Selman,et al.  Formal Models of Heavy-Tailed Behavior in Combinatorial Search , 2001, CP.

[19]  Joao Marques-Silva,et al.  GRASP-A new search algorithm for satisfiability , 1996, Proceedings of International Conference on Computer Aided Design.

[20]  Hector J. Levesque,et al.  Hard and Easy Distributions of SAT Problems , 1992, AAAI.

[21]  Brian C. Williams,et al.  Diagnosing Multiple Faults , 1987, Artif. Intell..

[22]  David Maxwell Chickering,et al.  A Bayesian Approach to Tackling Hard Computational Problems (Preliminary Report) , 2001, Electron. Notes Discret. Math..

[23]  Holger H. Hoos,et al.  Stochastic local search - methods, models, applications , 1998, DISKI.

[24]  Gilles Dequen,et al.  A backbone-search heuristic for efficient solving of hard 3-SAT formulae , 2001, IJCAI.

[25]  Fahiem Bacchus,et al.  Effective Preprocessing with Hyper-Resolution and Equality Reduction , 2003, SAT.

[26]  Alasdair Urquhart,et al.  The Symmetry Rule in Propositional Logic , 1999, Discret. Appl. Math..

[27]  Benjamin W. Wah,et al.  A discrete Lagrangian-based global-search method for solving satisfiability problems , 1996, Satisfiability Problem: Theory and Applications.

[28]  Paul Morris,et al.  The Breakout Method for Escaping from Local Minima , 1993, AAAI.

[29]  Mauricio G. C. Resende,et al.  Computational experience with an interior point algorithm on the satisfiability problem , 1990, IPCO.

[30]  David Zuckerman,et al.  Optimal Speedup of Las Vegas Algorithms , 1993, Inf. Process. Lett..

[31]  Steven David Prestwich,et al.  Local Search on SAT-encoded Colouring Problems , 2003, SAT.

[32]  Bart Selman,et al.  Problem Structure in the Presence of Perturbations , 1997, AAAI/IAAI.

[33]  M. Trick,et al.  Cliques, Coloring, and Satisfiability: Second DIMACS Implementation Challenge, Workshop, October 11-13, 1993 , 1996 .

[34]  Inês Lynce,et al.  An Overview of Backtrack Search Satisfiability Algorithms , 2003, Annals of Mathematics and Artificial Intelligence.

[35]  Stephen A. Cook,et al.  The Relative Efficiency of Propositional Proof Systems , 1979, Journal of Symbolic Logic.

[36]  Toby Walsh,et al.  Search in a Small World , 1999, IJCAI.

[37]  Michael D. Ernst,et al.  Automatic SAT-Compilation of Planning Problems , 1997, IJCAI.

[38]  Hans van Maaren,et al.  A two phase algorithm for solving a class of hard satissfiability problems , 1998 .

[39]  Djamal Habet,et al.  A Hybrid Approach for SAT , 2002, CP.

[40]  Bart Selman,et al.  Pushing the Envelope: Planning, Propositional Logic and Stochastic Search , 1996, AAAI/IAAI, Vol. 2.

[41]  Edward A. Hirsch,et al.  The SAT2002 competition , 2004, Annals of Mathematics and Artificial Intelligence.

[42]  Gerald J. Sussman,et al.  Forward Reasoning and Dependency-Directed Backtracking in a System for Computer-Aided Circuit Analysis , 1976, Artif. Intell..

[43]  Eugene Goldberg,et al.  BerkMin: A Fast and Robust Sat-Solver , 2002, Discret. Appl. Math..

[44]  Randal E. Bryant,et al.  Effective use of Boolean satisfiability procedures in the formal verification of superscalar and VLIW microprocessors , 2003, J. Symb. Comput..

[45]  E. Friedgut,et al.  Sharp thresholds of graph properties, and the -sat problem , 1999 .

[46]  Toby Walsh,et al.  Reformulating Propositional Satisfiability as Constraint Satisfaction , 2000, SARA.

[47]  James M. Crawford,et al.  Symmetry-Breaking Predicates for Search Problems , 1996, KR.

[48]  David G. Mitchell,et al.  Finding hard instances of the satisfiability problem: A survey , 1996, Satisfiability Problem: Theory and Applications.

[49]  Armin Biere,et al.  Bounded Model Checking Using Satisfiability Solving , 2001, Formal Methods Syst. Des..

[50]  Matthias F. Stallmann,et al.  A Local Search SAT Solver Using an Effective Switching Strategy and an Efficient Unit Propagation , 2003, SAT.

[51]  Chu Min Li,et al.  Integrating Equivalency Reasoning into Davis-Putnam Procedure , 2000, AAAI/IAAI.

[52]  Andrew W. Moore,et al.  Learning Evaluation Functions for Global Optimization and Boolean Satisfiability , 1998, AAAI/IAAI.

[53]  Kenneth L. McMillan,et al.  Symbolic model checking , 1992 .

[54]  Toby Walsh,et al.  Easy Problems are Sometimes Hard , 1994, Artif. Intell..

[55]  Ronen I. Brafman,et al.  A simplifier for propositional formulas with many binary clauses , 2001, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[56]  David S. Johnson,et al.  Cliques, Coloring, and Satisfiability , 1996 .

[57]  Hector J. Levesque,et al.  A New Method for Solving Hard Satisfiability Problems , 1992, AAAI.

[58]  Eric Horvitz,et al.  Restart Policies with Dependence among Runs: A Dynamic Programming Approach , 2002, CP.

[59]  Matthias F. Stallmann,et al.  QingTing: A Local Search SAT Solver Using an Efiective Switching Strategy and an E-cient Unit Propagation , 2003 .

[60]  Rémi Monasson,et al.  Determining computational complexity from characteristic ‘phase transitions’ , 1999, Nature.

[61]  Jeremy Frank,et al.  When Gravity Fails: Local Search Topology , 1997, J. Artif. Intell. Res..

[62]  Evangelos Kranakis,et al.  Rigorous results for random (2+p)-SAT , 2001, Theor. Comput. Sci..

[63]  Russell Impagliazzo,et al.  Memoization and DPLL: formula caching proof systems , 2003, 18th IEEE Annual Conference on Computational Complexity, 2003. Proceedings..

[64]  Henry A. Kautz,et al.  Using Problem Structure for Efficient Clause Learning , 2003, SAT.

[65]  Toby Walsh,et al.  Local Consistencies in SAT , 2003, SAT.

[66]  Rémi Monasson,et al.  A Study of Pure Random Walk on Random Satisfiability Problems with "Physical" Methods , 2003, SAT.

[67]  Rémi Monasson,et al.  Statistical mechanics methods and phase transitions in optimization problems , 2001, Theor. Comput. Sci..

[68]  Michael Molloy,et al.  A sharp threshold in proof complexity , 2001, STOC '01.

[69]  R. Zecchina,et al.  Phase transitions in combinatorial problems , 2001 .

[70]  Henry A. Kautz,et al.  Understanding the power of clause learning , 2003, IJCAI 2003.

[71]  Bart Selman,et al.  Ten Challenges in Propositional Reasoning and Search , 1997, IJCAI.

[72]  Bart Selman,et al.  Backdoors To Typical Case Complexity , 2003, IJCAI.

[73]  Bart Selman,et al.  Encoding Plans in Propositional Logic , 1996, KR.

[74]  Holger H. Hoos,et al.  On the Run-time Behaviour of Stochastic Local Search Algorithms for SAT , 1999, AAAI/IAAI.

[75]  Karem A. Sakallah,et al.  GRASP—a new search algorithm for satisfiability , 1996, ICCAD 1996.

[76]  Hilary Putnam,et al.  A Computing Procedure for Quantification Theory , 1960, JACM.

[77]  Bart Selman,et al.  Unifying SAT-based and Graph-based Planning , 1999, IJCAI.

[78]  Bart Selman,et al.  Boosting Combinatorial Search Through Randomization , 1998, AAAI/IAAI.

[79]  Bart Selman,et al.  Heavy-Tailed Phenomena in Satisfiability and Constraint Satisfaction Problems , 2000, Journal of Automated Reasoning.

[80]  Donald W. Loveland,et al.  A machine program for theorem-proving , 2011, CACM.

[81]  Igor L. Markov,et al.  Efficient symmetry breaking for Boolean satisfiability , 2003, IEEE Transactions on Computers.

[82]  Chu Min Li,et al.  On the limit of branching rules for hard random unsatisfiable 3-SAT , 2003, Discret. Appl. Math..

[83]  Endre Szemerédi,et al.  Many hard examples for resolution , 1988, JACM.

[84]  Edward A. Hirsch,et al.  UnitWalk: A new SAT solver that uses local search guided by unit clause elimination , 2005, Annals of Mathematics and Artificial Intelligence.

[85]  Laurent Simon,et al.  The Essentials of the SAT 2003 Competition , 2003, SAT.

[86]  Per Bjesse,et al.  Finding Bugs in an Alpha Microprocessor Using Satisfiability Solvers , 2001, CAV.

[87]  Hantao Zhang,et al.  SATO: An Efficient Propositional Prover , 1997, CADE.

[88]  Lakhdar Sais,et al.  Recovering and Exploiting Structural Knowledge from CNF Formulas , 2002, CP.

[89]  Armin Haken,et al.  The Intractability of Resolution , 1985, Theor. Comput. Sci..

[90]  Joao Marques-Silva,et al.  Using Randomization and Learning to Solve Hard Real-World Instances of Satisfiability , 2000, CP.

[91]  Toniann Pitassi,et al.  DPLL with Caching: A new algorithm for #SAT and Bayesian Inference , 2003, Electron. Colloquium Comput. Complex..

[92]  Sharad Malik,et al.  Chaff: engineering an efficient SAT solver , 2001, Proceedings of the 38th Design Automation Conference (IEEE Cat. No.01CH37232).

[93]  Roberto J. Bayardo,et al.  Using CSP Look-Back Techniques to Solve Real-World SAT Instances , 1997, AAAI/IAAI.

[94]  Matthew L. Ginsberg,et al.  Supermodels and Robustness , 1998, AAAI/IAAI.

[95]  Catherine C. McGeoch Experimental analysis of algorithms , 1986 .

[96]  M. Mézard,et al.  Analytic and Algorithmic Solution of Random Satisfiability Problems , 2002, Science.

[97]  B. Selman,et al.  Satisfied with Physics , 2002, Science.

[98]  Dale Schuurmans,et al.  Local search characteristics of incomplete SAT procedures , 2000, Artif. Intell..

[99]  Maria Luisa Bonet,et al.  A study of proof search algorithms for resolution and polynomial calculus , 1999, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039).

[100]  Sharad Malik,et al.  Efficient conflict driven learning in a Boolean satisfiability solver , 2001, IEEE/ACM International Conference on Computer Aided Design. ICCAD 2001. IEEE/ACM Digest of Technical Papers (Cat. No.01CH37281).

[101]  Igor L. Markov,et al.  Generic ILP versus specialized 0-1 ILP: an update , 2002, IEEE/ACM International Conference on Computer Aided Design, 2002. ICCAD 2002..

[102]  Randal E. Bryant,et al.  Effective use of boolean satisfiability procedures in the formal verification of superscalar and VLIW , 2001, DAC '01.

[103]  Lakhdar Sais,et al.  Boosting complete techniques thanks to local search methods , 1998, Annals of Mathematics and Artificial Intelligence.

[104]  Etienne de Klerk,et al.  Centrum voor Wiskunde en Informatica REPORTRAPPORT Report SEN-R9903 , 1999 .

[105]  Bart Selman,et al.  An Empirical Study of Greedy Local Search for Satisfiability Testing , 1993, AAAI.

[106]  Bart Selman,et al.  Accelerating Random Walks , 2002, CP.

[107]  J. Hooker Resolution vs. cutting plane solution of inference problems: Some computational experience , 1988 .

[108]  Edmund M. Clarke,et al.  Symbolic Model Checking: 10^20 States and Beyond , 1990, Inf. Comput..

[109]  Bart Selman,et al.  Local search strategies for satisfiability testing , 1993, Cliques, Coloring, and Satisfiability.

[110]  Pavel Pudlák,et al.  Satisfiability Coding Lemma , 1997, Proceedings 38th Annual Symposium on Foundations of Computer Science.