Shape memory alloys as an effective tool to damp oscillations

The SMA was studied for their macroscopic application in damping for civil engineering. The study is a synthesis and includes an outline of the models required for the SMA simulation and some case studies using the finite element analysis methods. This work is an overview that focuses in the mitigation of the oscillations in structures induced by earthquakes, and for a reduction of the oscillations amplitude in stayed cables under the action of rain, wind or traffic. The analysis needs the required conditions for each application determining the working conditions. The study includes the number of working cycles, the temperature effects and the cooling actions and, for instance, the action of the cycling frequency. The main target relates the appropriateness of the SMA for each purpose, and the suitability of the SMA device is always experimentally guaranteed. Furthermore, the applicability of the obtained results for SMA and the practical behavior of the SMA dampers were studied in international facilities. The paper includes appropriate suggestions for a correct preparation of the SMA dampers. This work outlines the effects of stress and temperature aging in NiTi, describes the particular structural effects between 18R and 6R, introduces a first attempt in the dynamic properties of the CuAlBe single crystals and summarizes some recent suggestions for damping using SMA.

[1]  S. Baik,et al.  Effects of amount of ε martensite, carbon content and cold working on damping capacity of an Fe–17% Mn martensitic alloy , 2003 .

[2]  Dong-Woon Han,et al.  Fe–Mn martensitic alloys for control of noise and vibration in engineering applications , 2006 .

[3]  H. Sehitoglu,et al.  Twinning stress in shape memory alloys: Theory and experiments , 2013 .

[4]  M. Ahlers,et al.  Influence of a constant stress during isothermal β phase ageing on the martensitic transformation in a Cu-Zn-Al shape memory alloy , 2004 .

[5]  Yinong Liu,et al.  Finite element computational modelling and experimental investigation of perforated NiTi plates under tension , 2013 .

[6]  A. Isalgué,et al.  Order Processes in Cu-Zn-Al Shape Memory Alloys Quantitative Approach to Ms Values by Resistance measurements , 1998 .

[7]  J. Pons,et al.  Two-stage reverse transformation in hyperstabilized β1′ martensite , 2002 .

[8]  E. Patoor,et al.  Thermomechanical behaviour of shape memory alloys , 1988 .

[9]  Keh Chih Hwang,et al.  Micromechanics modelling for the constitutive behavior of polycrystalline shape memory alloys. II: Study of the individual phenomena , 1993 .

[10]  S. W. Robertson,et al.  Mechanical fatigue and fracture of Nitinol , 2012 .

[11]  O. Basquin The exponential law of endurance tests , 1910 .

[12]  M. Ahlers,et al.  The martensitic transformation in β Cu-Zn , 1974 .

[13]  Songye Zhu,et al.  Mechanical properties of superelastic Cu–Al–Be wires at cold temperatures for the seismic protection of bridges , 2008 .

[14]  Setsuo Kajiwara,et al.  Vibration mitigation by the reversible fcc/hcp martensitic transformation during cyclic tension¿compression loading of an Fe¿Mn¿Si-based shape memory alloy , 2006 .

[15]  F. Lovey,et al.  Pseudoelastic fatigue of CuZnAl single crystals: the effect of concomitant diffusional processes , 2000 .

[16]  Etienne Patoor,et al.  Constitutive equations for polycrystalline thermoelastic shape memory alloys.: Part I. Intragranular interactions and behavior of the grain , 1999 .

[17]  Reginald DesRoches,et al.  SHAPE MEMORY ALLOYS IN SEISMIC RESISTANT DESIGN AND RETROFIT: A CRITICAL REVIEW OF THEIR POTENTIAL AND LIMITATIONS , 2004 .

[18]  Antonio Isalgue,et al.  Damping in Civil Engineering Using SMA. Part I: Particular Properties of CuAIBe for Damping of Family Houses , 2010 .

[19]  Shuichi Miyazaki,et al.  Mechanical Properties and Shape Memory Behavior of Ti-Nb Alloys , 2004 .

[20]  James G. Boyd,et al.  Thermomechanical Response of Shape Memory Composites , 1993, Smart Structures.

[21]  Vladimir Brailovski,et al.  Fatigue Properties of Superelastic Ti-Ni Filaments Used in Braided Cables for Bone Fixation , 2008 .

[22]  P. Wollants,et al.  A Thermodynamic Analysis of the Stress-Induced Martensitic Transformation in a Single Crystal , 1979 .

[23]  T. Sawaguchi,et al.  The pseudoelastic behavior of Fe–Mn–Si-based shape memory alloys containing Nb and C , 2005 .

[24]  L. Faravelli,et al.  Structural components in shape memory alloy for localized energy dissipation , 2008 .

[25]  V. Torra,et al.  Built in dampers for family homes via SMA: An ANSYS computation scheme based on mesoscopic and microscopic experimental analyses , 2007 .

[26]  A. Isalgué,et al.  Metastable effects on martensitic transformation in SMA (I) recoverable effects by the action of thermodynamic forces in parent phase , 2005 .

[27]  W. Zaki,et al.  A constitutive model for shape memory alloys accounting for thermomechanical coupling , 2011 .

[28]  Michael F. Ashby,et al.  An introduction to their properties and applications , 1980 .

[29]  H. Kanetaka,et al.  In Vitro Biocompatibility of Ni-Free Ti-Based Shape Memory Alloys for Biomedical Applications , 2010 .

[30]  M. Shin,et al.  Damping Capacity in Fe-27Mn-3.5Si Alloy , 1994 .

[31]  C. Auguet,et al.  Built in dampers for stayed cables in bridges via SMA. The SMARTeR-ESF project: A mesoscopic and macroscopic experimental analysis with numerical simulations , 2013 .

[32]  E. Patoor,et al.  Détermination du comportement thermomécanique des alliages à mémoire de forme par optimisation d'un potentiel thermodynamique , 1993 .

[33]  Antonio Isalgue,et al.  METASTABLE EFFECTS ON MARTENSITIC TRANSFORMATION IN SMA Part 4. Thermomechanical properties of CuAlBe and NiTi observations for dampers in family houses , 2007 .

[34]  J. Reddy,et al.  Temperature-dependent thermal properties of a shape memory alloy/MAX phase composite: Experiments and modeling , 2014 .

[35]  A. Isalgué,et al.  Microstructure and Thermodynamics of the Martensitic Transformation , 2000 .

[36]  C. M. Wayman,et al.  Shape-Memory Materials , 2018 .

[37]  Hartmut Janocha,et al.  Adaptronics and Smart Structures: Basics, Materials, Design, and Applications , 2007 .

[38]  Hisaaki Tobushi,et al.  Stress-Strain-Temperature Relationships of TiNi Shape Memory Alloy Suitable for Thermomechanical Cycling , 1992 .

[39]  B. Bolle,et al.  Orthorhombic lattice deformation of CuAlBe shape-memory single crystals under cyclic strain , 2001 .

[40]  C. M. Wayman Shape memory and related phenomena , 1992 .

[41]  Weiguo Li,et al.  A Constitutive Description for Shape Memory Alloys with the Growth of Martensite Band , 2014, Materials.

[42]  Vladimir Brailovski,et al.  Shape memory alloys : fundamentals, modeling and applications , 2003 .

[43]  O. Matsumura,et al.  Pseudoelasticity in an Fe–28Mn–6Si–5Cr shape memory alloy , 2000 .

[44]  Maria Guiomar de Azevedo Bahia,et al.  The influence of high amplitude cyclic straining on the behaviour of superelastic NiTi , 2006 .

[45]  J. Jun,et al.  The influence of Co on damping capacity of Fe–Mn–Co alloys , 1998 .

[46]  C. Mapelli,et al.  Mechanical properties of martensitic Cu–Zn–Al foams in the pseudoelastic regime , 2010 .

[47]  Patrick Wollants,et al.  Thermally- and stress-induced thermoelastic martensitic transformations in the reference frame of equilibrium thermodynamics , 1993 .

[48]  X. Ren,et al.  Mechanism of martensite aging effect , 2004 .

[49]  Antonio Isalgue,et al.  Conditioning treatments of Cu–Al–Be shape memory alloys for dampers , 2006 .

[50]  F. Falk Model free energy, mechanics, and thermodynamics of shape memory alloys , 1980 .

[51]  M. Shin,et al.  Transformation Behavior and Damping Capacity in Fe-17%Mn-X %C-Y %Ti Alloy , 1997 .

[52]  G. Eggeler,et al.  Pseudoelastic cycling of ultra-fine-grained NiTi shape-memory wires , 2005 .

[53]  C. Mapelli,et al.  Processing of brass open-cell foam by silica-gel beads replication , 2009 .

[54]  A. Isalgue,et al.  Metastable effects on martensitic transformation in SMA part V. fatigue-life and detailed hysteresis behavior in NiTi and Cu-based alloys , 2008 .

[55]  K. Tanaka A THERMOMECHANICAL SKETCH OF SHAPE MEMORY EFFECT: ONE-DIMENSIONAL TENSILE BEHAVIOR , 1986 .

[56]  Songye Zhu,et al.  Seismic Response Control of Building Structures with Superelastic Shape Memory Alloy Wire Dampers , 2008 .

[57]  S. Hurlebaus,et al.  Seismic Response Control Using Shape Memory Alloys: A Review , 2011 .

[58]  M. Sade,et al.  Thermal and pseudoelastic cycling in Cu–14.1Al–4.2Ni (wt%) single crystals , 2005 .

[59]  E. Cesari,et al.  Defect-assisted diffusion and kinetic stabilisation in Cu–Al–Be β′1 martensite , 2008 .

[60]  Qingping Sun,et al.  Micromechanics modelling for the constitutive behavior of polycrystalline shape memory alloys. I: Derivation of general relations , 1993 .

[61]  Vicenç Torra,et al.  SMA in Mitigation of Extreme Loads in Civil Engineering: Damping Actions in Stayed Cables , 2011 .

[62]  Norio Shinya,et al.  Low-cost high-quality Fe-based shape memory alloys suitable for pipe joints , 2003, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[63]  Donatello Cardone,et al.  Mechanical behaviour of shape memory alloys for seismic applications 1. Martensite and austenite NiTi bars subjected to torsion , 2001 .

[64]  Jan Van Humbeeck,et al.  Non-medical applications of shape memory alloys , 1999 .

[65]  Ferdinando Auricchio,et al.  Shape-memory alloys: macromodelling and numerical simulations of the superelastic behavior , 1997 .

[66]  Ferdinando Auricchio,et al.  A uniaxial model for shape-memory alloys , 1997 .

[67]  Xiao-xiang Wang,et al.  Pseudoelastic Behavior in an Fe-Mn-Si-Ni-Co Shape Memory Alloy , 1998 .

[68]  A. Maynadier,et al.  Thermomechanical modelling of a NiTi SMA sample submitted to displacement-controlled tensile test , 2014 .

[69]  K. Ishida,et al.  Superelastic Effect in Polycrystalline Ferrous Alloys , 2011, Science.

[70]  Hsin-Chih Lin,et al.  Pseudoelasticity of thermo-mechanically treated Fe–Mn–Si–Cr–Ta alloys , 2013 .

[71]  A. Baruj,et al.  Temperature dependence of critical stress and pseudoelasticity in a Fe-Mn-Si-Cr pre-rolled alloy , 2010 .

[72]  M. Ahlers,et al.  The influence of short-range disorder on te martensitic transformation in CuZn and CuZnAl alloys , 1979 .

[73]  A. Pelton,et al.  Nitinol Fatigue: A Review of Microstructures and Mechanisms , 2011, Journal of Materials Engineering and Performance.

[74]  C. Zhao Superelasticity and two-way shape memory effect in an Fe-Mn-Si-Cr-Ni-N alloy , 2000 .

[75]  A. Isalgué,et al.  Ms-evolution in Cu-Zn-Al SMA. Predictable temperature and time actions on parent phase , 1997 .

[76]  Akira Sato,et al.  Internal friction due to ϵ → γ reverse transformation in an FeMnSiCr shape memory alloy , 1988 .

[77]  S. Montecinos,et al.  Thermomechanical behavior of a CuAlBe shape memory alloy , 2008 .

[78]  Othmane Benafan,et al.  Thermomechanical cycling of a NiTi shape memory alloy-macroscopic response and microstructural evolution , 2014 .

[79]  Shuichi Miyazaki,et al.  Fatigue life of Ti–50 at.% Ni and Ti–40Ni–10Cu (at.%) shape memory alloy wires , 1999 .

[80]  V. A. Likhachev Structure-Analitycal Theory of Martensitic Unelasticity , 1995 .

[81]  A. Condó,et al.  Stability and stabilization of 2H martensite in Cu–Zn–Al single crystals , 2005 .

[82]  Christoph Czaderski,et al.  Applications of shape memory alloys in civil engineering structures—Overview, limits and new ideas , 2005 .

[83]  C. Lexcellent,et al.  RL-models of pseudoelasticity and their specification for some shape memory solids , 1994 .

[84]  F. C. Lovey,et al.  Shape memory in Cu-based alloys: phenomenological behavior at the mesoscale level and interaction of martensitic transformation with structural defects in Cu-Zn-Al , 1999 .

[85]  F. Lovey,et al.  Improvements in the mechanical properties of the 18R ↔ 6R high-hysteresis martensitic transformation by nanoprecipitates in CuZnAl alloys , 2012 .

[86]  Hisaaki Tobushi,et al.  Rotating-bending fatigue of a TiNi shape-memory alloy wire , 1997 .

[87]  Vladimir Brailovski,et al.  Superelastic shape memory alloy damper equipped with a passive adaptable pre-straining mechanism , 2007 .

[88]  J. Humbeeck,et al.  Influence of thermal treatments on the long range order and the two way shape memory effect induced by stabilization in Cu–Al–Be single crystals , 1999 .

[89]  V. Torra,et al.  Martensitic transformations in shape-memory alloys: Successes and failures of thermal analysis and calorimetry , 1992 .

[90]  L. Brinson One-Dimensional Constitutive Behavior of Shape Memory Alloys: Thermomechanical Derivation with Non-Constant Material Functions and Redefined Martensite Internal Variable , 1993 .

[91]  J. Humbeeck,et al.  A Two-Stage Martensite Transformation in a Cu-13.99 mass% Al-3.5 mass% Ni Alloy , 1987 .

[92]  F. C. Lovey,et al.  Pseudoelasticity of Cu–Al–Be single crystals: Unexpected mechanical behavior , 2011 .

[93]  Antoni Cladera,et al.  Iron-based shape memory alloys for civil engineering structures: An overview , 2014 .

[94]  S. Kajiwara,et al.  Characteristic features of shape memory effect and related transformation behavior in Fe-based alloys , 1999 .

[95]  M. Ahlers,et al.  The stabilization of martensite in CuZnAl alloys , 1988 .

[96]  D. Lagoudas,et al.  A UNIFIED THERMODYNAMIC CONSTITUTIVE MODEL FOR SMA AND FINITE ELEMENT ANALYSIS OF ACTIVE METAL MATRIX COMPOSITES , 1996 .

[97]  L. Mañosa,et al.  A comparative study of the post-quench behaviour of Cu–Al–Be and Cu–Zn–Al shape memory alloys , 1998 .

[98]  J. Humbeeck,et al.  Stabilization and hyperstabilization of Cu–Al–Be β1′ martensite by thermal treatment and plastic deformation , 2004 .

[99]  John C. Wilson,et al.  Shape Memory Alloys for Seismic Response Modification: A State-of-the-Art Review , 2005 .

[100]  Vladimir Brailovski,et al.  Modeling of Shape Memory Alloy Actuators Using Likhachev’s Formulation , 2011 .

[101]  Sara Casciati,et al.  Experimental studies on the fatigue life of shape memory alloy bars , 2010 .

[102]  M. Dolce,et al.  Mechanical behaviour of shape memory alloys for seismic applications 2. Austenite NiTi wires subjected to tension , 2001 .

[103]  C. Auguet,et al.  Metastable effects on martensitic transformation in SMA , 2010 .

[104]  Moncef L. Nehdi,et al.  Utilizing shape memory alloys to enhance the performance and safety of civil infrastructure: a review , 2007 .

[105]  Yoshimi Watanabe,et al.  Development of Fe-Mn-Si-Cr Shape Memory Alloy Machining Chips Reinforced Smart Composite , 2006 .

[106]  Etienne Patoor,et al.  Thermomechanical Behavior of Shape Memory Alloys , 1989 .

[107]  A. Gruttadauria,et al.  Cyclic pseudoelastic behavior and energy dissipation in as-cast Cu-Zn-Al foams of different densities , 2011 .

[108]  R. Kaibyshev,et al.  High strain rate superplasticity in a commercial Al–Mg–Sc alloy , 2004 .

[109]  Ferdinando Auricchio,et al.  Performance evaluation of shape-memory-alloy superelastic behavior to control a stay cable in cable-stayed bridges , 2011 .

[110]  Vicenç Torra,et al.  Experimental study of damping in civil engineering structures using smart materials (Cu-Al-Be – NiTi SMA), applications to steel portico and to stayed cables for bridges (The SMARTeR project) , 2010 .

[111]  N. Shinya,et al.  Effect of pre-deformation of austenite on shape memory properties in Fe-Mn-Si-based alloys containing Nb and C , 2002 .

[112]  H. Maier,et al.  Inter-martensite strain evolution in NiMnGa single crystals , 2008 .

[113]  Yongjun He,et al.  Rate-dependent domain spacing in a stretched NiTi strip , 2010 .

[114]  V. Torra,et al.  Pseudoelastic cycling in Cu-Al-Be single crystals: Interaction with diffusive phenomena , 2009 .

[115]  C. H. Gonzalez,et al.  Hyperstabilisation of martensite in Cu-Al-Be alloys , 2006 .

[116]  Young‐kook Lee,et al.  Damping Capacity in Fe-Mn Binary Alloys , 1997 .

[117]  Yoshimi Watanabe,et al.  Smart Materials-Fundamentals and Applications. Enhanced Mechanical Properties of Fe-Mn-Si-Cr Shape Memory Fiber/Plaster Smart Composite. , 2002 .

[118]  Wael Zaki,et al.  A 3D model of the cyclic thermomechanical behavior of shape memory alloys , 2007 .

[119]  Patrick Terriault,et al.  Application of Dual Kriging to the Construction of a General Phenomenological Material Law for Shape Memory Alloys , 1997 .

[120]  Vladimir Brailovski,et al.  Modeling of residual strain accumulation of NiTi shape memory alloys under uniaxial cyclic loading , 2009 .

[121]  M. Ahlers,et al.  Plastic deformation of martensitic CuZn single crystals , 1973 .

[122]  T. B. Zineb,et al.  A 2D finite element based on a nonlocal constitutive model describing localization and propagation of phase transformation in shape memory alloy thin structures , 2014 .

[123]  Seung-Han Baik,et al.  High damping Fe–Mn martensitic alloys for engineering applications , 2000 .

[124]  K. Tanaka,et al.  A phenomenological description on thermomechanical behavior of shape memory alloys , 1990 .

[125]  Bassem O Andrawes,et al.  Application of shape memory alloy dampers in the seismic control of cable-stayed bridges , 2009 .

[126]  Vladimir Brailovski,et al.  Finite element modeling of a progressively expanding shape memory stent. , 2006, Journal of biomechanics.

[127]  R. Romero,et al.  The plastic deformation of long range ordered 18R martensitic single crystals of Cu-Zn-Al alloys , 1992 .

[128]  Dirk Helm,et al.  Thermomechanical behavior of shape memory alloys , 2001, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[129]  C. H. Gonzalez,et al.  Study of martensitic stabilisation under stress in Cu–Al–Be shape memory alloy single crystal , 2004 .

[130]  Q. Sun,et al.  Frequency-dependent temperature evolution in NiTi shape memory alloy under cyclic loading , 2010 .

[131]  Antonio Isalgue,et al.  Pseudoelastic fatigue of NiTi wires: frequency and size effects on damping capacity , 2010 .

[132]  F. Auricchio,et al.  Theoretical and numerical modeling of shape memory alloys accounting for multiple phase transformations and martensite reorientation , 2014 .

[133]  T. Nam,et al.  Thermodynamic constitutive model for load-biased thermal cycling test of shape memory alloy , 2013 .

[134]  Wael Zaki,et al.  A three-dimensional model of the thermomechanical behavior of shape memory alloys , 2007 .

[135]  R. Romero,et al.  Slip systems in Cu–Zn–Al martensitic phases , 1999 .

[136]  Dimitris C. Lagoudas,et al.  Micromechanics of precipitated near-equiatomic Ni-rich NiTi shape memory alloys , 2014 .

[137]  H. Sehitoglu,et al.  Fatigue response of NiFeGa single crystals , 2007 .

[138]  C. Auguet,et al.  Metastable effects on martensitic transformation in SMA part VII. Aging problems in NiTi , 2008 .

[139]  D. Lagoudas Shape memory alloys : modeling and engineering applications , 2008 .

[140]  Akira Ishida,et al.  Effect of Heat Treatment on Shape Memory Behavior of Ti-rich Ti–Ni Thin Films , 1995 .

[141]  G. Guénin,et al.  The effect of quenching treatment on the reversible martensitic transformation in CuAlBe alloys , 2004 .

[142]  Antonio Isalgue,et al.  Damping in civil engineering using SMA Part 2 – particular properties of NiTi for damping of stayed cables in bridges , 2013 .

[143]  Eugenio Dragoni,et al.  Functional Fatigue of NiTi Shape Memory Wires under Assorted Loading Conditions , 2012 .

[144]  K. Tanaka,et al.  A thermomechanical description of materials with internal variables in the process of phase transitions , 1982 .

[145]  Maurizio Indirli,et al.  Shape Memory Alloy Devices for the Structural Improvement of Masonry Heritage Structures , 2008 .

[146]  James K. Knowles,et al.  A continuum model of a thermoelastic solid capable of undergoing phase transitions , 1993 .

[147]  H. Hosoda,et al.  Shape Memory Behavior of Ti–22Nb–(0.5–2.0)O(at%) Biomedical Alloys , 2005 .

[148]  L. C. Brinson,et al.  Simplifications and Comparisons of Shape Memory Alloy Constitutive Models , 1996 .

[149]  C. Auguet,et al.  Metastable effects on martensitic transformation in SMA , 2013, Journal of Thermal Analysis and Calorimetry.

[150]  Carmine Maletta,et al.  Analytical modeling of stress-induced martensitic transformation in the crack tip region of nickel–titanium alloys , 2010 .

[151]  Filippo Ubertini,et al.  Toward a hybrid control solution for cable dynamics: Theoretical prediction and experimental validation , 2009 .

[152]  A. Eberhardt,et al.  Fatigue behavior of Cu-Al-Be shape memory single crystals , 2000 .

[153]  On the thermodynamic driving force for coherent phase transformations , 1994 .

[154]  Etienne Patoor,et al.  Micromechanical Modelling of Superelasticity in Shape Memory Alloys , 1996 .

[155]  N. Igata,et al.  Effects of ε martensite and nitrogen on the damping property of high strength Fe-Cr-Mn alloys , 2003 .

[156]  Michael F. Ashby,et al.  Engineering materials 1: an introduction to their properties and applications , 1996 .

[157]  H. Maier,et al.  Full-field strain evolution during intermartensitic transformations in single-crystal NiFeGa , 2008 .

[158]  K. Tanaka,et al.  Thermodynamic models of pseudoelastic behaviour of shape memory alloys , 1992 .

[159]  K. Ishida,et al.  Ferrous Polycrystalline Shape-Memory Alloy Showing Huge Superelasticity , 2010, Science.

[160]  K. Tanaka,et al.  Average stress in matrix and average elastic energy of materials with misfitting inclusions , 1973 .

[161]  H. Maier,et al.  Dependence of functional degradation on crystallographic orientation in NiTi shape memory alloys aged under stress , 2013 .

[162]  G. Kang,et al.  Crystal plasticity based constitutive model of NiTi shape memory alloy considering different mechanisms of inelastic deformation , 2014 .

[163]  M. Elahinia,et al.  Manufacturing and processing of NiTi implants: A review , 2012 .

[164]  F. Lovey,et al.  Mechanical behavior under cyclic loading of the 18R-6R high-hysteresis martensitic transformation in Cu-Zn-Al alloys with nanoprecipitates , 2013 .

[165]  Shipu Chen,et al.  Martensitic transformation and shape memory effect in Fe–Mn–Si based alloys , 2005 .

[166]  X. Ren,et al.  Physical metallurgy of Ti–Ni-based shape memory alloys , 2005 .

[167]  C. Somsen,et al.  Microstructural aspects related to pseudoelastic cycling in ultra fine grained Ni–Ti , 2008 .

[168]  A. Baruj,et al.  The effect of pre-rolling Fe–Mn–Si-based shape memory alloys: Mechanical properties and transmission electron microcopy examination , 2008 .

[169]  F. Lovey,et al.  18R to 2H transformations in CuZnAl alloys , 1989 .

[170]  Billie F. Spencer,et al.  MR damping system on Dongting Lake cable-stayed bridge , 2003, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[171]  Ferdinando Auricchio,et al.  Shape-memory alloys: modelling and numerical simulations of the finite-strain superelastic behavior , 1997 .

[172]  Mohammad Elahinia,et al.  A rate dependent tension–torsion constitutive model for superelastic nitinol under non-proportional loading; a departure from von Mises equivalency , 2013 .

[173]  Wael Zaki,et al.  Theoretical and numerical modeling of solid–solid phase change: Application to the description of the thermomechanical behavior of shape memory alloys , 2008 .