Characterization of Magnetic Nanoparticles in Biological Matrices.

This Feature describes several methods for the characterization of magnetic nanoparticles in biological matrices such as cells and tissues. The Feature focuses on sample preparation and includes several case studies where multiple techniques were used in conjunction.

[1]  Nathan D. Klein,et al.  Dark field transmission electron microscopy as a tool for identifying inorganic nanoparticles in biological matrices. , 2015, Analytical chemistry.

[2]  Gongke Li,et al.  Magnetic separation techniques in sample preparation for biological analysis: a review. , 2014, Journal of pharmaceutical and biomedical analysis.

[3]  Ling Ye,et al.  Folic acid-conjugated MnO nanoparticles as a T1 contrast agent for magnetic resonance imaging of tiny brain gliomas. , 2014, ACS applied materials & interfaces.

[4]  Christopher J. Hogan,et al.  Accounting for biological aggregation in heating and imaging of magnetic nanoparticles. , 2014, Technology.

[5]  Yuh-Chang Sun,et al.  Quantitatively profiling the dissolution and redistribution of silver nanoparticles in living rats using a knotted reactor-based differentiation scheme. , 2014, Analytical chemistry.

[6]  M. Martín-Pastor,et al.  Progress in the characterization of bio-functionalized nanoparticles using NMR methods and their applications as MRI contrast agents. , 2014, Progress in nuclear magnetic resonance spectroscopy.

[7]  A. Biris,et al.  Magnetic nanoparticles as contrast agents in biomedical imaging: recent advances in iron- and manganese-based magnetic nanoparticles , 2014, Drug metabolism reviews.

[8]  H. Arami,et al.  Room-temperature detection of single 20 nm super-paramagnetic nanoparticles with an imaging magnetometer , 2014, 1403.0866.

[9]  G. Bothun,et al.  Centrifugation-based assay for examining nanoparticle-lipid membrane binding and disruption. , 2014, The Analyst.

[10]  J. Tetienne,et al.  Magnetometry with nitrogen-vacancy defects in diamond , 2013, Reports on progress in physics. Physical Society.

[11]  A. Rajca,et al.  High-spin S = 2 ground state aminyl tetraradicals. , 2013, Journal of the American Chemical Society.

[12]  D. F. Barber,et al.  Long term biotransformation and toxicity of dimercaptosuccinic acid-coated magnetic nanoparticles support their use in biomedical applications. , 2013, Journal of controlled release : official journal of the Controlled Release Society.

[13]  Sungho Jin,et al.  In vivo nanoneurotoxicity screening using oxidative stress and neuroinflammation paradigms. , 2013, Nanomedicine : nanotechnology, biology, and medicine.

[14]  V. Zerbi,et al.  Alzheimer's disease: pathophysiology and applications of magnetic nanoparticles as MRI theranostic agents. , 2013, ACS chemical neuroscience.

[15]  Gang Liu,et al.  Functional Magnetic Nanoparticles for Non-Viral Gene Delivery and MR Imaging , 2013, Pharmaceutical Research.

[16]  F. V. van Veggel,et al.  Synthesis of nanoparticles, their biocompatibility, and toxicity behavior for biomedical applications. , 2013, Journal of materials chemistry. B.

[17]  S. Low,et al.  Characterization of magnetic nanoparticle by dynamic light scattering , 2013, Nanoscale Research Letters.

[18]  R. L. Penn,et al.  Cryogenic Transmission Electron Microscopy: Aqueous Suspensions of Nanoscale Objects , 2013, Microscopy and Microanalysis.

[19]  L. Lartigue,et al.  Biodegradation of iron oxide nanocubes: high-resolution in situ monitoring. , 2013, ACS nano.

[20]  A. Cuschieri,et al.  Tumour Cell Labelling by Magnetic Nanoparticles with Determination of Intracellular Iron Content and Spatial Distribution of the Intracellular Iron , 2013, International journal of molecular sciences.

[21]  M. D. Lukin,et al.  Optical magnetic imaging of living cells , 2013, Nature.

[22]  J. Barandiaran,et al.  Magnetite biomineralization in Magnetospirillum gryphiswaldense: time-resolved magnetic and structural studies. , 2013, ACS nano.

[23]  J. Reineke,et al.  Quantitative detection of PLGA nanoparticle degradation in tissues following intravenous administration. , 2013, Molecular pharmaceutics.

[24]  Zhenghua Li,et al.  Quantitative analysis of the magnetic domain structure in polycrystalline La(0.7)Sr(0.3)MnO3 thin films by magnetic force microscopy. , 2013, Physical chemistry chemical physics : PCCP.

[25]  C. Haynes,et al.  Toward Correlation in In Vivo and In Vitro Nanotoxicology Studies , 2012, Journal of Law, Medicine & Ethics.

[26]  M. Frigione,et al.  Characterization of Nanocomposites by Thermal Analysis , 2012, Materials.

[27]  Jen-Jie Chieh,et al.  A Noninvasive Method to Determine the Fate of Fe3O4 Nanoparticles following Intravenous Injection Using Scanning SQUID Biosusceptometry , 2012, PloS one.

[28]  K. Williams,et al.  Iron-reducing bacteria accumulate ferric oxyhydroxide nanoparticle aggregates that may support planktonic growth , 2012, The ISME Journal.

[29]  Y. Zhao,et al.  Inorganic nanoparticle-based T1 and T1/T2 magnetic resonance contrast probes. , 2012, Nanoscale.

[30]  A. Chopra,et al.  Characterization of nanoparticle-based contrast agents for molecular magnetic resonance imaging , 2012, Journal of Nanoparticle Research.

[31]  H. Mouritsen Sensory biology: Search for the compass needles , 2012, Nature.

[32]  Jeremy Shaw,et al.  Clusters of iron-rich cells in the upper beak of pigeons are macrophages not magnetosensitive neurons , 2012, Nature.

[33]  R. Hill,et al.  Nanoparticle ζ -potentials. , 2012, Accounts of chemical research.

[34]  V. Panchenko,et al.  Study of interparticle interaction in conjugates of magnetic nanoparticles injected into mice , 2012 .

[35]  N. de Jonge,et al.  Electron microscopy of specimens in liquid. , 2011, Nature nanotechnology.

[36]  M. Devaud,et al.  Nanomagnetism reveals the intracellular clustering of iron oxide nanoparticles in the organism. , 2011, Nanoscale.

[37]  K. McDonald,et al.  Freeze substitution in 3 hours or less , 2011, Journal of microscopy.

[38]  S. Manohar,et al.  Application of plasma spectrometry for the analysis of engineered nanoparticles in suspensions and products , 2011 .

[39]  C. Kumar,et al.  Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery. , 2011, Advanced drug delivery reviews.

[40]  C. Hong,et al.  Non-invasive and high-sensitivity scanning detection of magnetic nanoparticles in animals using high-Tc scanning superconducting-quantum-interference-device biosusceptometry. , 2011, The Review of scientific instruments.

[41]  Ingrid Hilger,et al.  Magnetic multicore nanoparticles for hyperthermia—influence of particle immobilization in tumour tissue on magnetic properties , 2011, Nanotechnology.

[42]  F. Gendron,et al.  Long term in vivo biotransformation of iron oxide nanoparticles. , 2011, Biomaterials.

[43]  P. Lindahl,et al.  Biophysical probes of iron metabolism in cells and organelles. , 2011, Current opinion in chemical biology.

[44]  D. Peckys,et al.  Visualizing Gold Nanoparticle Uptake in Live Cells with Liquid Scanning Transmission Electron Microscopy , 2011, Nano letters.

[45]  Vladislav Ya. Panchenko,et al.  Magnetic Nanoparticle Degradation in vivo Studied by Mössbauer Spectroscopy , 2010 .

[46]  C. Gorski,et al.  Determination of nanoparticulate magnetite stoichiometry by Mössbauer spectroscopy, acidic dissolution, and powder X-ray diffraction: A critical review , 2010 .

[47]  L. Dai,et al.  Preparation of cells for assessing ultrastructural localization of nanoparticles with transmission electron microscopy , 2010, Nature Protocols.

[48]  D. Peckys,et al.  Nanoscale Imaging of Whole Cells Using a Liquid Enclosure and a Scanning Transmission Electron Microscope , 2009, PloS one.

[49]  Paolo Arosio,et al.  Ferritins: a family of molecules for iron storage, antioxidation and more. , 2009, Biochimica et biophysica acta.

[50]  P. Clode,et al.  Characterization of biominerals in the radula teeth of the chiton, Acanthopleura hirtosa. , 2009, Journal of structural biology.

[51]  G. Paciotti,et al.  Biodistribution of TNF-alpha-coated gold nanoparticles in an in vivo model system. , 2009, Nanomedicine.

[52]  Bradford G Orr,et al.  Development of a remanence measurement-based SQUID system with in-depth resolution for nanoparticle imaging , 2009, Physics in medicine and biology.

[53]  S. Hashimoto,et al.  The measurement of small magnetic signals from magnetic nanoparticles attached to the cell surface and surrounding living cells using a general-purpose SQUID magnetometer , 2009, Physics in medicine and biology.

[54]  D. Peckys,et al.  Electron microscopy of whole cells in liquid with nanometer resolution , 2009, Proceedings of the National Academy of Sciences.

[55]  Alfred Leitenstorfer,et al.  Nanoscale imaging magnetometry with diamond spins under ambient conditions , 2008, Nature.

[56]  Florence Gazeau,et al.  Universal cell labelling with anionic magnetic nanoparticles. , 2008, Biomaterials.

[57]  John F. McDonald,et al.  Magnetic nanoparticle-peptide conjugates for in vitro and in vivo targeting and extraction of cancer cells. , 2008, Journal of the American Chemical Society.

[58]  D. Schüler,et al.  Intracellular magnetite biomineralization in bacteria proceeds by a distinct pathway involving membrane-bound ferritin and an iron(II) species. , 2007, Angewandte Chemie.

[59]  G. Falkenberg,et al.  A novel concept of Fe-mineral-based magnetoreception: histological and physicochemical data from the upper beak of homing pigeons , 2007, Naturwissenschaften.

[60]  Alex I. Braginski,et al.  The SQUID handbook , 2006 .

[61]  Alex de Lozanne,et al.  Application of magnetic force microscopy in nanomaterials characterization. , 2006 .

[62]  M. Dyar,et al.  Mössbauer Spectroscopy of Earth and Planetary Materials , 2006 .

[63]  G. Parkin,et al.  Hexahydro-1,3,5-trinitro-1,3,5-triazine transformation by biologically reduced ferrihydrite: evolution of Fe mineralogy, surface area, and reaction rates. , 2005, Environmental science & technology.

[64]  L. Trahms,et al.  Blocking of magnetic moments of magnetosomes measured by magnetorelaxometry and direct observation by magnetic force microscopy , 2005 .

[65]  H. Itozaki,et al.  Normal conducting transfer coil for SQUID NDE , 2004 .

[66]  W. Wiltschko,et al.  Ultrastructural analysis of a putative magnetoreceptor in the beak of homing pigeons , 2003, The Journal of comparative neurology.

[67]  J. Bacri,et al.  Interaction of Anionic Superparamagnetic Nanoparticles with Cells: Kinetic Analyses of Membrane Adsorption and Subsequent Internalization , 2002 .

[68]  M. Walker,et al.  DETECTION OF SUBMICROSCOPIC MAGNETITE PARTICLES USING REFLECTANCE MODE CONFOCAL LASER SCANNING MICROSCOPY , 2001, Cell biology international.

[69]  R. Magalhães-Paniago,et al.  Mössbauer spectroscopy, superparamagnetism and ferrofluids , 2001 .

[70]  J. Kirschvink,et al.  Magnetite-based magnetoreception , 2001, Current Opinion in Neurobiology.

[71]  Michael Winklhofer,et al.  Superparamagnetic Magnetite in the Upper Beak Tissue of Homing Pigeons , 2000, Biometals.

[72]  D. Dickson,et al.  Nanostructured magnetism in living systems , 1999 .

[73]  A. Glauert,et al.  Biological Specimen Preparation for Transmission Electron Microscopy , 1998 .

[74]  J. Dobson,et al.  Magnetic material in the human hippocampus , 1995, Brain Research Bulletin.

[75]  R. Frankel,et al.  Electron microscopic studies of magnetosomes in magnetotactic bacteria , 1994, Microscopy research and technique.

[76]  J. Chang,et al.  Magnetic resonance spectrometer with a dc SQUID detector , 1990 .

[77]  Chen,et al.  Study of local environment in quasicrystalline Al86Mn14 by Mössbauer effect. , 1986, Physical review letters.

[78]  F. Growcock,et al.  Mechanism of Iron Oxide Dissolution—A Review of Recent Literature , 1984 .

[79]  R. Blakemore,et al.  Structure, morphology and crystal growth of bacterial magnetite , 1984, Nature.

[80]  J. L. Gould,et al.  Pigeons have magnets. , 1979, Science.

[81]  G. Wertheim Mossbauer Effect in Chemistry and Solid-State Physics. , 1964, Science.

[82]  S. M. Deyev,et al.  Biodegradation of Magnetic Nanoparticles in Rat Brain Studied by Mössbauer Spectroscopy , 2013, IEEE Transactions on Magnetics.

[83]  M. Chuev,et al.  Biodegradation of Magnetic Nanoparticles in Mouse Liver From Combined Analysis of Mössbauer and Magnetization Data , 2013, IEEE Transactions on Magnetics.

[84]  P. V. van Aken,et al.  Quantitative determination of iron oxidation states in minerals using Fe L2,3-edge electron energy-loss near-edge structure spectroscopy , 1998 .

[85]  H. Lowenstam,et al.  Ultrastructure and development of iron mineralization in the radular teeth of Cryptochiton stelleri (Mollusca). , 1967, Journal of ultrastructure research.

[86]  E. Kuzmann,et al.  International Union of Pure and Applied Chemistry Analytical Chemistry Division Commission on Radiochemistry and Nuclear Techniques* Critical Review of Analytical Applications of Mössbauer Spectroscopy Illustrated by Mineralogical and Geological Examples (iupac Technical Report) Critical Review of A , 2022 .

[87]  L. Gamarra,et al.  Dovepress Open Access to Scientific and Medical Research Open Access Full Text Article Ferromagnetic Resonance for the Quantification of Superparamagnetic Iron Oxide Nanoparticles in Biological Materials , 2022 .